36 research outputs found

    Program for expectant and new mothers: a population-based study of participation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Manitoba Healthy Baby Program is aimed at promoting pre- and perinatal health and includes two components: 1) prenatal income supplement; 2) community support programs. The goal of this research was to determine the uptake of these components by target groups.</p> <p>Methods</p> <p>Data on participation in each of the two program components were linked to data on all hospital births in Manitoba between 2004/05 through 2007/08. Descriptive analyses of participation by maternal characteristics were produced. Logistic regression analyses were conducted to identify factors associated with participation in the two programs. Separate regressions were run for two groups of women giving birth during the study period: 1) total population; 2) those receiving provincial income assistance during the prenatal period.</p> <p>Results</p> <p>Almost 30% of women giving birth in Manitoba received the Healthy Baby prenatal income supplement, whereas only 12.6% participated in any community support programs. Over one quarter (26.4%) of pregnant women on income assistance did not apply for and receive the prenatal income supplement, despite all being eligible for it. Furthermore, 77.8% of women on income assistance did not participate in community support programs. Factors associated with both receipt of the prenatal benefit and participation in community support programs included lower SES, receipt of income assistance, obtaining adequate prenatal care, having completed high school and having depressive symptoms. Having more previous births was associated with higher odds of receiving the prenatal benefit, but lower odds of attending community support programs. Being married was associated with lower odds of receiving the prenatal benefit but higher odds of participating in community support programs.</p> <p>Conclusions</p> <p>Although uptake of the Healthy Baby program in Manitoba is greater for women in groups at risk for poorer perinatal outcomes, a substantial number of women eligible for this program are not receiving it; efforts to reach these women should be enhanced.</p

    Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir

    Get PDF
    The widely accepted paradigm of Earth's geochemical evolution states that the successive extraction of melts from the mantle over the past 4.5 billion years formed the continental crust, and produced at least one complementary melt-depleted reservoir that is now recognized as the upper-mantle source of mid-ocean-ridge basalts1. However, geochemical modelling and the occurrence of high 3He/4He (that is, primordial) signatures in some volcanic rocks suggest that volumes of relatively undifferentiated mantle may reside in deeper, isolated regions2. Some basalts from large igneous provinces may provide temporally restricted glimpses of the most primitive parts of the mantle3,4, but key questions regarding the longevity of such sources on planetary timescales—and whether any survive today—remain unresolved. Kimberlites, small-volume volcanic rocks that are the source of most diamonds, offer rare insights into aspects of the composition of the Earth’s deep mantle. The radiogenic isotope ratios of kimberlites of different ages enable us to map the evolution of this domain through time. Here we show that globally distributed kimberlites originate from a single homogeneous reservoir with an isotopic composition that is indicative of a uniform and pristine mantle source, which evolved in isolation over at least 2.5 billion years of Earth history—to our knowledge, the only such reservoir that has been identified to date. Around 200 million years ago, extensive volumes of the same source were perturbed, probably as a result of contamination by exogenic material. The distribution of affected kimberlites suggests that this event may be related to subduction along the margin of the Pangaea supercontinent. These results reveal a long-lived and globally extensive mantle reservoir that underwent subsequent disruption, possibly heralding a marked change to large-scale mantle-mixing regimes. These processes may explain why uncontaminated primordial mantle is so difficult to identify in recent mantle-derived melts

    Lattice distortion in a zircon population and its effects on trace element mobility and U-Th-Pb isotope systematics: examples from the Lewisian Gneiss Complex, Northwest Scotland

    Get PDF
    Zircon is a key mineral in geochemical and geochronological studies in a range of geological settings as it is mechanically and chemically robust. However, distortion of its crystal lattice can facilitate enhanced diffusion of key elements such as U and Pb. Electron backscatter diffraction (EBSD) analysis of ninety-nine zircons from the Lewisian Gneiss Complex (LGC) of northwest Scotland has revealed five zircons with lattice distortion. The distortion can take the form of gradual bending of the lattice or division of the crystal into subgrains. Zircon lattices are distorted because of either post-crystallisation plastic distortion or growth defects. Three of the five distorted zircons, along with many of the undistorted zircons in the population, were analysed by ion microprobe to measure U and Pb isotopes, Ti and REEs. Comparison of Th/U ratio, 207Pb/206Pb age, REE profile and Ti concentration between zircons with and without lattice distortion suggests that the distortion is variably affecting the concentration of these trace elements and isotopes within single crystals, within samples and between localities. REE patterns vary heterogeneously, sometimes relatively depleted in heavy REEs or lacking a Eu anomaly. Ti-in-zircon thermometry records temperatures that were either low (~700 °C) or high (>900 °C) relative to undistorted zircons. One distorted zircon records apparent 207Pb/206Pb isotopic ages (−3.0 to +0.3 % discordance) in the range of ~2,420–2,450 Ma but this does not correlate with any previously dated tectonothermal event in the LGC. Two other distorted zircons give discordant ages of 2,331 ± 22 and 2,266 ± 40 Ma, defining a discordia lower intercept within error of a late amphibolite-facies tectonothermal event. This illustrates that Pb may be mobilised in distorted zircons at lower metamorphic grade than in undistorted zircons. These differences in trace element abundances and isotope systematics in distorted zircons relative to undistorted zircons are generally interpreted to have been facilitated by subgrain walls. Trace elements and isotopes would have moved from undistorted lattice into these subgrain walls as their chemical potential is modified due to the presence of the dislocations which make up the subgrain wall. Subgrain walls provided pathways for chemical exchange between crystal and surroundings. Only five per cent of zircons in this population have lattice distortion suggesting it will not have a major impact on zircon geochronology studies, particularly as three of the five distorted zircons are from strongly deformed rocks not normally sampled in such studies. However, this does suggest there may be a case for EBSD analysis of zircons prior to geochemical analysis when zircons from highly deformed rocks are to be investigated

    Wyoming craton mantle lithosphere: reconstructions based on xenocrysts from Sloan and Kelsey Lake kimberlites

    No full text
    Book synopsis: The structure of the lithospheric mantle of the Wyoming craton beneath two Paleozoic kimberlite pipes, Sloan and Kelsey Lake 1 in Colorado, was reconstructed using single-grain thermobarometry for a large data set (>2,600 EPMA analyses of xenocrysts and mineral intergrowths). Pyrope compositions from both pipes relate to the lherzolitic field (up to 14 wt% Cr2O3) with a few deviations in CaO to harzburgitic field for KL-1 garnets. Clinopyroxene variations (Cr-diopsides and omphacites) from the Sloan pipe show similarities with those from Daldyn kimberlites, Yakutia, and from kimberlites in the central part of the Slave craton, while KL-1 Cpx resemble those from the Alakit kimberlites in Yakutia that sample metasomatized peridotites. LAM ICP analyses recalculated to parental melts for clinopyroxenes from Sloan resemble contaminated protokimberlite melts, while clinopyroxenes from KL-1 show metasomatism by subduction fluids. Melts calculated from garnets from both pipes show peaks for Ba, Sr and U, and HFSE troughs, typical of subduction-related melts. Parental melts calculated for ilmenites from Sloan suggest derivation from highly differentiated melts, or melting of Ilm-bearing metasomatites, while those from Kelsey Lake do not display extreme HFSE enrichment. Three P-Fe# (where Fe# = Fe/(Fe + Mg) in atomic units) trends within the mantle lithosphere beneath Sloan have been obtained using monomineral thermobarometry. At the base, the trends reveal melt metasomatized (possibly sheared) peridotites (Fe# = 13–15 %), refertilized peridotites (Fe# = 10–11 %) and primary mantle peridotites (Fe# = 7–9 %). Anomalous heating was found at depths equivalent to 4.0 and 3.0–2.0 GPa. The mantle section beneath KL-1 is widely metasomatized with several stages of refertilization with dispersed Ilm–Cpx trends. The step-like subadibatic heating in the mantle column beneath the Sloan pipe is strong in the base and the middle part and weaker within 2–3 GPa. Heating beneath the KL-1 pipe is more evident in the base and middle part from 7.0 to 3.0 GPa

    The Mesoproterozoic zig-zag dal basalts and associated intrusions of eastern north Greenland : mantle plume-lithosphere interaction

    Get PDF
    The lavas of the Zig-Zag Dal Formation of eastern North Greenland constitute a Mesoproterozoic tholeiitic flood basalt succession up to 1,350 m thick, extending >10,000 km2, and underlain by a sill complex. U–Pb dating on baddeleyite from one of the sills thought to be contemporaneous with the lava extrusion, gives an age of 1,382±2 Ma. The lavas, subdivided from oldest to youngest into Basal, Aphyric and Porphyritic units, are dominantly basaltic (>6 wt.% MgO), with more evolved lavas occurring within the Aphyric unit. The most magnesian lavas occur in the Basal unit and the basaltic lavas exhibit a generalised upward decrease in Mg number (MgO/(MgO + Fe2O3T)) through the succession. All of the lavas are regarded as products of variable degrees of olivine, augite and plagioclase fractionation and to be residual after generation of cumulates in the deep crust. The basaltic lavas display an up-section fall in the ratio of light to heavy rare-earth elements (LREE/HREE) but an up-section rise in Zr/Nb, Sc, Y and HREE. The older lavas (Basal and Aphyric units) are characterised by low Nd and Hf in contrast to higher values in the younger (Porphyritic unit) lavas. The Porphyritic Unit basalts are characterised by a notable enrichment in Fe and Ti. The Zig-Zag Dal succession is inferred to reflect an increase in melt fraction in the sub-lithospheric mantle, with melting commencing in garnet–lherzolite facies peridotites and subsequently involving spinel-facies mantle at increasingly shallow depths. Melting is deduced to have occurred beneath an attenuating continental lithosphere in conjunction with ascent of a mantle plume. Lithospheric contamination of primitive melts is inferred to have diminished with time with the Porphyritic unit basalts being products of essentially uncontaminated plume-source magmas. The high iron signature may reflect a relatively iron-rich plume source
    corecore