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Abstract   Zircon is a key mineral in geochemical and geochronological studies in a range of 19 

geological settings as it is mechanically and chemically robust. However, distortion of its crystal 20 

lattice can facilitate enhanced diffusion of key elements such as U and Pb. Electron Backscatter 21 

Diffraction (EBSD) analysis of ninety-nine zircons from the Lewisian Gneiss Complex (LGC) of 22 

northwest Scotland has revealed five zircons with lattice distortion. The distortion can take the form 23 

of gradual bending of the lattice or division of the crystal into subgrains. Zircon lattices are distorted 24 

because of either post-crystallisation plastic distortion or growth defects. Three of the five distorted 25 

zircons, along with many of the undistorted zircons in the population, were analysed by ion 26 
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microprobe to measure U and Pb isotopes, Ti and REEs. Comparison of Th/U ratio, 207Pb/206Pb age, 27 

REE profile and Ti concentration between zircons with and without lattice distortion suggests that 28 

the distortion is variably affecting the concentration of  these trace elements and isotopes within 29 

single crystals, within samples and between localities. REE patterns vary heterogeneously, 30 

sometimes relatively depleted in heavy REEs or lacking a Eu anomaly. Ti-in-zircon thermometry 31 

records temperatures that were either low (~700°C) or high (>900°C) relative to undistorted zircons. 32 

One distorted zircon records apparent 207Pb/206Pb isotopic ages (-3.0% to +0.3% discordance) in the 33 

range of ~2420-2450Ma but this does not correlate with any previously dated tectonothermal event 34 

in the LGC. Two other distorted zircons give discordant ages of 2331±22Ma and 2266±0Ma, defining 35 

a discordia lower intercept within error of a late amphibolite-facies tectonothermal event. This 36 

illustrates that Pb may be mobilised in distorted zircons at lower metamorphic grade than in 37 

undistorted zircons. These differences in trace element abundances and isotope systematics in 38 

distorted zircons relative to undistorted zircons are generally interpreted to have been facilitated by 39 

subgrain walls. Trace elements and isotopes would have moved from undistorted lattice into these 40 

subgrain walls as their chemical potential is modified due to the presence of the dislocations which 41 

make up the subgrain wall. Subgrain walls provided pathways for chemical exchange between crystal 42 

and surroundings. Only five per cent of zircons in this population have lattice distortion suggesting it 43 

will not have a major impact on zircon geochronology studies, particularly as three of the five 44 

distorted zircons are from strongly deformed rocks not normally sampled in such studies. However, 45 

this does suggest there may be a case for EBSD analysis of zircons prior to geochemical analysis 46 

when zircons from highly deformed rocks are to be investigated. 47 

 48 

Keywords – zircon, lattice distortion, trace elements & isotopes, EBSD 49 

 50 
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 Zircon is a common accessory mineral in a wide range of sedimentary, igneous and 52 

metamorphic rocks. It has a high volume diffusion closure temperature of typically >900°C for 53 

radiogenic Pb (Cherniak and Watson, 2003) and is regarded as a mechanically and chemically robust 54 

mineral (Finch and Hanchar, 2003), suitable for geochemical investigation of Precambrian geological 55 

events. The primary incorporation of uranium but not lead makes it ideal for radiometric dating; it 56 

also contains other elements such as hafnium, titanium and the rare earth elements (REE), which 57 

allow a range of geological interpretations to be made.  58 

 Populations of zircons are routinely analysed to determine the tectonothermal evolution of 59 

rocks throughout the world, generally involving U-Pb isotopic measurements. Recent research, 60 

however, has indicated that some of this isotopic and trace element analysis could be compromised 61 

by plastic deformation of the zircon crystal lattice (Reddy et al., 2006; Timms et al., 2006a; Timms et 62 

al., 2006b; Timms et al., 2011; Piazolo et al., 2012). Plastic deformation occurs when forces applied 63 

to a grain cause the crystal lattice to bend and distort through movement of lattice dislocations; 64 

crystals may also grow with defects and therefore have a distorted lattice from the time of their 65 

initial formation. High spatial resolution zircon analysis has conventionally been guided by 66 

backscattered electron (BSE) and cathodoluminescence (CL) imaging in a scanning electron 67 

microscope. CL reveals internal chemical zoning, xenocrysts, overgrowths, inclusions and 68 

metamictisation while BSE imaging highlights fractures. Fractures are generally avoided in 69 

subsequent analysis as they may contain contamination or may have lost or gained key elements, 70 

which would result in data giving meaningless geological interpretations. While BSE and CL can show 71 

brittle deformation (fracturing) of the crystal lattice, they do not show plastic lattice distortion.  72 

 The technique required to reveal lattice distortion is electron backscatter diffraction (EBSD) 73 

(Prior et al., 1999; Prior et al., 2009). EBSD mapping is conducted inside a scanning electron 74 

microscope. The electron beam rasters across the sample surface and at each point a Kikuchi 75 

(diffraction) pattern is obtained. EBSD software automatically indexes prominent lattice planes from 76 

the diffraction pattern, which are controlled by the crystal lattice orientation (Prior et al., 1999). If 77 
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there is variation in the crystallographic orientation across a crystal (lattice distortion), this will be 78 

shown by an EBSD map.  79 

 Reddy et al. (2006) first showed that lattice distortion, in the form of low-angle boundaries 80 

from the plastic deformation of zircon, acted as enhanced diffusion pathways for trace elements. CL 81 

imaging of a single zircon megacryst from an Indian Ocean gabbro revealed narrow lines of reduced 82 

CL emittance, corresponding with the low-angle boundaries highlighted by EBSD analysis. Ion 83 

microprobe analysis of REEs indicated that in the part of the megacryst that had been plastically 84 

deformed, REE abundance had been modified from that in the undeformed part; REE patterns 85 

showed a relative enrichment in middle REEs and depletion in heavy REEs.  86 

 Timms et al. (2006b) investigated the effects of lattice distortion formed by plastic 87 

deformation on the U-Th-Pb system in a zircon megacryst from the Lewisian Gneiss Complex (LGC) of 88 

Northwest Scotland (the same host rocks as the zircon population in this study). They found that, as 89 

with REEs, low-angle boundaries within the zircon megacryst acted as enhanced diffusion pathways 90 

for U and Th; the highest measured concentrations and Th/U ratios were found to be in these 91 

microstructures. 207Pb/206Pb ages were uniform across the megacryst, which led the authors to infer 92 

that plastic deformation had occurred shortly after crystallisation.  93 

 Timms et al. (2011) examined another zircon megacryst, this time from a Siberian xenolith. 94 

As with the zircons from the LGC and Indian Ocean, this megacryst contained subgrains separated by 95 

low-angle boundaries. They determined that Ti is also affected by lattice distortion, as with REE and 96 

U-Th-Pb in their previous studies. The low-angle boundaries were depleted in Ti relative to the 97 

subgrains and this could not be explained by volume diffusion alone – the low-angle boundaries 98 

were acting as fast diffusion pathways.  99 

 Piazolo et al. (2012) investigated plastic lattice distortion in two large zircon porphyroclasts 100 

of 0.8-1.5mm size and associated aggregated grains. They recorded rotations around <001>, highly 101 

distorted half-circular shaped deformation zones located at grain edges, and low-angle boundary 102 
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networks forming deformation zones up to 100 μm wide. CL patterns and U-Pb ages were found to 103 

have been variably reset by the lattice distortions. 104 

 This previous work documented examples of plastic deformation in single zircon megacrysts 105 

several millimetres in diameter, mainly hosted in undeformed rocks. In this contribution we 106 

investigate the frequency, effects and causes of plastic deformation across a large population of 107 

zircons of more normal size (<200µm length), of the type routinely used for U-Pb dating and other 108 

geochemical analysis, from rocks with varying degrees of deformation. Our multigrain study 109 

comprises ninety-nine zircons, all of which we have analysed by EBSD. A subset of zircons with and 110 

without lattice distortion were analysed by ion microprobe for U-Th-Pb, REE and Ti and we 111 

document the effect of the lattice distortion on the mobility of these elements and isotopes. We also 112 

investigate the relationship between the frequency of lattice distortion and deformation in the host 113 

rock, and speculate on the causes of the lattice distortion.  114 

 115 

Geological Setting 116 

 Rocks from the Lewisian Gneiss Complex (LGC) of northwest Scotland were chosen for this 117 

study. The LGC crops out along the coastal strip of the northwest mainland as well as most of the 118 

Outer Hebrides (Fig. 1a). The LGC is composed dominantly of tonalite-trondhjemite-granodiorite 119 

(TTG) gneisses with subordinate mafic and metasedimentary units, cross-cut by the mafic Scourie 120 

Dyke Swarm and minor granite and pegmatite sheets (e.g. Peach et al., 1907; Tarney and Weaver, 121 

1987). Sutton and Watson (1951) distinguished two tectonothermal events, one before and one 122 

after intrusion of the Scourie Dykes; the later of these two events, the Laxfordian, comprised static 123 

and dynamic amphibolite-facies retrogression and heterogeneous deformation across the LGC. 124 

Sutton and Watson named the pre-Scourie dyke event the ‘Scourian’ but it has since been 125 

subdivided into the Badcallian (Park, 1970) and the Inverian (Evans, 1965). Both the Badcallian and 126 

Inverian are heterogeneously overprinted by the Laxfordian and are only preserved in certain areas 127 

of the complex, most notably the ‘Central Region’ of Sutton and Watson (1951), the area around 128 
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Scourie (Fig. 5.1b). Field mapping and petrography showed that the Inverian assemblage is also 129 

amphibolite-facies, whilst the earlier Badcallian is granulite-facies. Corfu et al. (1994) obtained U-Pb 130 

zircon ages of ~2710Ma and ~2490Ma which they attributed to the Badcallian and Inverian 131 

respectively, although Friend and Kinny (1995) interpreted an age of ~2490Ma to date the Badcallian 132 

tectonothermal event. Corfu et al. (1994) and Kinny and Friend (1997) both attributed U-Pb titanite 133 

ages of ~1750Ma to the Laxfordian event.  134 

Methodology 135 

 Twenty-one samples of TTG gneisses and three samples of metasemipelites were collected 136 

from localities around the village of Scourie (Fig. 1b). These samples were chosen as they recorded a 137 

range of different tectonothermal histories: some preserved early Badcallian or Inverian 138 

assemblages and structures while others were pervasively altered in the Laxfordian. Rather than just 139 

collecting the most undeformed rocks possible, as in most zircon geochronological studies, samples 140 

with varying degrees of deformation enabled investigation into whether zircon lattice distortion is 141 

more frequent in deformed rocks. 142 

 Thin sections and rock chips (~3mm thickness) were cut from samples so that there was a 143 

petrographic context for any distorted zircons which could allow speculation as to the cause of 144 

lattice distortion. These were polished to 0.25µm grade using progressively finer diamond paste and 145 

finally colloidal silica solution. For SIMS analysis, the thin sections were cut up and the relevant parts 146 

were mounted onto a one inch glass round with epoxy resin suitable for the ion microprobe sample 147 

holder. Zircons were also mechanically separated from the same samples to increase the zircon 148 

population size. A population of fifty-five in-situ zircons and forty-four grain-mounted zircons from 149 

the twenty-four samples were analysed for lattice distortion. 150 

 Backscattered electron (BSE) and cathodoluminescence (CL) imaging were carried out in a 151 

Philips XL30 SEM at the University of Liverpool. EBSD was conducted on a CamScan X500 crystal 152 

probe with a thermionic field emission gun, also at University of Liverpool. Analytical parameters 153 

broadly follow that of Mariani et al. (2009) and Bestmann et al. (2006). Lattice misorientation maps 154 
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displayed in this contribution are composites of  band contrast (the pattern quality of the EBSD data) 155 

and texture component (a false-colour map of crystallographic orientation relative to a given point) 156 

created in the Tango module of CHANNEL 5 software. EBSD maps are interpreted qualitatively, and 157 

quantitatively using a Burgers Vector analysis, to elucidate possible dislocation types responsible for 158 

lattice distortion (Wheeler et al., 2009) – this is the first published use of this method on a mineral. 159 

 SIMS analysis of zircon was carried out at the NERC Ion Microprobe Facility, University of 160 

Edinburgh. Trace elements were measured using a Cameca ims-4f ion microprobe while U-Th-Pb 161 

isotopic measurements were made using a Cameca 1270 ion microprobe. Analytical and correction 162 

procedures follow those outlined by Kelly and Harley (2005a) and Kelly et al. (2008). Analytical 163 

reproducibility of U/Pb ratios during and between analytical periods was calibrated against the 164 

91500 (Wiedenbeck et al., 1995), SL1 (Maas et al., 1992) and Plesovice (Slama et al., 2008) zircon 165 

standards. Plesovice was the primary standard and yielded a mean 206Pb/238U ratio of 166 

0.05359±0.00023 (MSWD = 2.4; 95% conf.; 340.5±4.8Ma; n = 62). U-Pb age plots and calculations 167 

were made using the computer program Isoplot 4.11 (Ludwig, 2003). All 207Pb/206Pb ages are quoted 168 

at 2σ uncertainty. Analytical reproducibility of trace elements was calibrated against the 91500 and 169 

SL1 zircon standard and the NIST SRM-610 glass standard (Hinton, 1999). For most REEs (middle-170 

heavy), the average analytical error was <10% (2σ) but for some for the lighter REEs which have 171 

lower concentrations (La, Pr, Nd, Sm), it was higher. Analytical reproducibility against the NIST 172 

SRM610 glass standard was <7% (2σ) for all trace elements analysed. 173 

 174 

Results 175 

Distorted Zircons 176 

 EBSD analysis showed that five zircons out of the population of ninety-nine have internal 177 

lattice distortions of at least 3°. The five distorted zircons are described below in the context of their 178 

host rocks; three of these were analysed by ion microprobe for U-Th-Pb, Ti and REEs (Tables 1 & 2) 179 

and compared against undistorted zircons from the same population. Table 3 summarises the results 180 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 
 

for each distorted zircon.  181 

 Zircon GG09/1 was located on a thin section from sample GG09, collected at UK Grid 182 

Reference NC 17947 41005, ~4.5km southeast of Scourie village (Geisgeil, Fig. 1b). At this locality, 183 

weakly-banded amphibolite-facies tonalitic gneiss is cut by a Scourie Dyke, which is in turn cut by a 184 

Laxfordian shear zone (Fig. 2a). Sample GG09 is from the pre-dyke banded tonalitic gneiss and is 185 

composed of ~40% hornblende aggregates, ~30% plagioclase, ~30% quartz and accessory biotite and 186 

opaques; there are no mineral shape fabrics in this rock (Fig. 3). It is interpreted to be a Badcallian 187 

granulite-facies gneiss that was subsequently pervasively statically retrogressed. Zircon GG09/1 (Fig. 188 

4a) is a large and unusually squarish-shaped crystal, approximately 200x200µm in size; the lattice 189 

distortion is confined to one corner of the crystal, where the lattice gradually bends through 5° out 190 

to the tip. The CL pattern for this zircon is irregular – a narrow bright rim partially surrounds a CL-191 

dark zone and fairly uniform lighter zone, which appears to have partially overprinted some earlier 192 

oscillatory zoning (Fig. 4a). Zircon GG09/1 was the only zircon found at this locality and so in the 193 

absence of undistorted zircons to compare it to, it was not analysed by ion microprobe. 194 

 Zircon ST02/2 was located on a thin section from sample ST02, collected at UK Grid 195 

Reference NC 14970 46124, ~1.5km northwest of Scourie village (Sithean Mor, Fig. 1b). At this 196 

locality, an enclave of metasemipelite is surrounded by tonalitic gneiss; the field relationships 197 

suggest the fabric in the metasemipelite may be pre-dyke as the fabric in the surrounding TTG gneiss 198 

is cross-cut by a Scourie dyke (Fig. 2b). Sample ST02 is from the metasemipelite and is composed of 199 

~30% plagioclase, ~30% quartz aggregates, ~30% biotite laths and relict garnet porphyroblasts. 200 

There is a coarse mineral layering and the quartz aggregates define a shape fabric; biotite laths are 201 

not aligned and the garnet porphyroblasts are heavily fractured and retrogressed to biotite around 202 

the rims (Fig. 3). Zircon ST02/2 (Fig. 4b) is roughly elliptical and approximately 100µm in length along 203 

its long axis; there is lattice misorientation across the crystal of around 3° (Fig. 4b). BSE imaging 204 

reveals a brittle fracture, which correlates to a certain degree with the microstructure shown in the 205 
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EBSD map but there is still apparent lattice distortion on either side of this (Fig. 4b). The zircon is 206 

largely CL-dark with irregular patches of lighter CL response (Fig. 4b).  207 

 Zircon BP06/3 was located on a thin section from sample BP06, collected at UK Grid 208 

Reference NC 14565 41561, ~3.5km south-southeast of Scourie village (Badcall Point, Fig. 1b). At this 209 

locality, an early Badcallian gneissic layering in tonalitic gneiss is cut by a narrow band of possibly 210 

Inverian fabric; this is cut by a Laxfordian shear zone, which also cuts a Scourie Dyke (Fig. 2c). Sample 211 

BP06 is from the Laxfordian shear zone and is composed of ~75% sericitised plagioclase, ~20% 212 

hornblende and ~5% quartz with accessory allanite, titanite, ilmenite and rutile. Sub-millimetre 213 

hornblende crystals aggregate to define a moderate mineral aggregate lineation (Fig. 3). Zircon 214 

BP06/3 (Fig. 4c) is a large irregularly-shaped zircon, approximately 300x150µm in size; lattice 215 

distortion occurs in one half of this elongate crystal, up to 10° from the centre to the tip. The 216 

stepped nature of the misorientation profile indicates that this crystal is split into subgrains. BSE 217 

imaging shows a small fracture along one edge of the crystal, which is also picked up by EBSD but is 218 

unrelated to the lattice distortion shown by the EBSD (Fig. 4c).  219 

 The CL pattern is irregular – it is generally CL-dark with a slightly brighter rim (Fig. 4c). A 220 

brighter linear feature (a fracture) passes through the crystal but appears unrelated to the lattice 221 

distortion. There are many sinuous CL-dark lines sub-parallel to the subgrain walls shown by EBSD 222 

although they do not appear to correlate with the position of the subgrain walls; these sinuous CL-223 

dark lines are similar to features noted by Reddy et al. (2006) and Timms et al. (2011), which they 224 

interpret to be subgrain walls.  225 

 Five ion microprobe analytical spots were made on this zircon (see Fig. 4c), two of which (4 226 

& 5) were placed on subgrain walls with the other three in different microstructural domains of the 227 

crystal; the spot locations were checked after ion microprobe analysis with CL imaging. For the five 228 

spots, Th/U ratios range from 1.8-3.2 (Fig. 5a) while the 207Pb/206Pb ages fall between 2422±20Ma 229 

and 2453±16Ma (Fig. 5b). The five ages are well within error of each other, with discordance of -230 

3.02% to +0.26%. Ti concentrations are between 5.7 and 10.7ppm (Fig. 6). Four of the five spots 231 
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show typical zircon REE patterns (Fig. 7a); zircons are enriched in heavy REEs relative to light REEs 232 

but also have a positive Ce anomaly and a negative Eu anomaly (Kelly and Harley, 2005a; Kelly and 233 

Harley, 2005b). However, spot 3 is depleted in heavy REEs with a Lu abundance of only 383ppm; this 234 

illustrated by the low Yb/Gd ratio of 7 relative to ≥10 for most undistorted zircons (Fig. 7b, Table 2). 235 

Numerous other zircons were found in this sample, including some located within a few millimetres 236 

of zircon BP06ChZ3, but all were undistorted. 237 

 Zircons DP02/2 and DP02/7 were located on a thin section from sample DP02, collected at 238 

UK Grid Reference NC 17923 35972, ~6km west-northwest of Kylesku village (Duartmore Point, Fig. 239 

1b). At this locality, a Scourie Dyke cuts across Badcallian granulite-facies tonalitic gneisses but is 240 

rotated and sheared by a Laxfordian shear zone (Fig. 2d). Sample DP02 is from the Laxfordian shear 241 

zone and is composed of ~60% hornblende aggregates, ~35% sericitised plagioclase and ~5% quartz 242 

with accessory rutile, titanite, ilmenite and apatite. Sub-millimetre hornblende crystals aggregate to 243 

define strong mineral lineation (Fig. 3). Only two zircons were found in this sample big enough for 244 

ion microprobe analysis, and both show lattice distortion.  245 

 Zircon DP02/2 (Fig. 4d) is a small elliptical zircon, approximately 80µm in length along its 246 

long axis; there is up to 7° misorientation in a band running diagonally across the crystal with one 247 

fairly sharp boundary suggesting a fracture; BSE imaging does not clearly suggest this as a fracture. 248 

Due to the small size of the zircon, it was difficult to get a high-resolution CL image but it shows 249 

many sinuous dark lines, as in zircon BP06/3; some of these correlate with lines of dark blebs shown 250 

by BSE imaging, and with the lattice distortion pattern and therefore may represent subgrain walls. 251 

There is also a bright spot in the centre of the grain, which does not correspond with the 252 

microstructure (Fig. 4d). Just one ion microprobe analysis was made for this zircon due to its small 253 

size. The Th/U ratio is 0.49 (Fig. 5a) while the apparent 207Pb/206Pb age of 2331±22Ma is discordant 254 

by 6.3%, plotting well below concordia (Fig. 5b). Ti abundance is 22ppm (Fig. 6). Light REEs form a 255 

typical zircon pattern but there is no Eu anomaly (concentration of Eu is higher than Sm). The heavy 256 

REEs show a flatter profile relative to undistorted zircons (Fig. 7a), illustrated by a very low Yb/Gd 257 
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ratio of 4 (Fig. 7b); the concentration of Lu is only 137ppm.  258 

  Zircon DP02/7 (Fig. 4e) is a squat, slightly elliptical crystal, approximately 100x80µm in size; 259 

there is up to 15° variation in lattice orientation across the crystal, with the most extreme 260 

deformation occurring in opposite corners. The EBSD analysis also demonstrates an unusual cross-261 

hatched pattern in lattice orientation in one part of the crystal, with misorientation of up to 7° here 262 

(Fig. 4e). BSE imaging shows the core of the grain to have some concentric zoning with fractures 263 

emanating from this (Fig. 4e). CL imaging shows the core to be very CL-dark which suggests high U 264 

content; the rim, including area of cross-hatched lattice distortion, is CL-bright (Fig. 4e). High U 265 

concentrations can induce metamictisation, which causes volume increase resulting in the radial 266 

fracture pattern (Corfu et al., 2003). While the rim has clearly formed before the metamictisation, it 267 

is difficult to say whether the cross-hatched lattice distortion occurred before the metamictisation or 268 

is related to it. Just one ion microprobe analysis was made for this zircon due to its small size; the 269 

spot was placed in an unfractured part of the CL-bright rim showing cross-hatched lattice distortion. 270 

The Th/U ratio is 0.28 (Fig. 5a) while the 207Pb/206Pb age of 2266±40Ma is discordant by 8.5%, 271 

plotting well below concordia (Fig. 5b). Ti concentration is 47ppm (Fig. 6). The REE pattern is typical 272 

of that expected for zircon (Kelly and Harley, 2005a) (Fig. 7a).  273 

 274 

Undistorted Zircons 275 

 Ion microprobe U-Th-Pb, Ti and REE data from three of the five distorted zircons were 276 

compared to undistorted zircons to illustrate the effects of lattice distortion on trace element 277 

mobility and isotope systematics, and the geological conclusions drawn from them. The samples to 278 

which the distorted zircons were compared, and the reasons why, are given in Table 4. EBSD analysis 279 

shows little or no lattice misorientation in undistorted zircons while brittle fractures are visible in 280 

BSE images (Fig. 8). Undistorted zircons from sample BP06 displayed a range of CL patterns 281 

comprising dark cores, oscillatory zoning patterns, bright overgrowths and various other patterns. 282 

Th/U ratios ranged from 0.6-2.2 (Fig. 5a) while apparent 207Pb/206Pb ages ranged from 2485±30Ma to 283 
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2973±24Ma (Fig. 5b); discordance ranged from -2% to +11% (Table 1). Ti concentrations were 14-284 

24ppm (Fig. 6). The REE patterns are typical of that expected for zircon but Yb/Gd ratios are lower 285 

than those recorded by Kelly and Harley (2005a) (Fig. 7b).  286 

 Only two zircons were located and analysed from sample DP02 and these both had distorted 287 

lattices. In order to investigate the effects of lattice distortion on their trace elements and isotopes, 288 

undistorted zircons from sample DP01 were used for comparison. This sample was located ~1m 289 

away from DP02 in the marginal part of the shear zone. Sample DP01 is composed of ~40% quartz, 290 

~40% plagioclase and ~20% sieve-textured hornblende and quartz, after pyroxene, with accessory 291 

rutile, allanite, magnetite and apatite. There is no lineation, only weak gneissic layering and the 292 

sample is therefore much less intensely deformed than sample DP02. Undistorted zircons from 293 

sample DP01 displayed a range of CL patterns comprising dark cores, oscillatory zoning patterns, 294 

bright overgrowths and various other patterns. Th/U ratios ranged from 0.1-1.5 (Fig. 5a) while 295 

apparent 207Pb/206Pb ages ranged from 2430±44Ma to 3017±56Ma (Fig. 5b); discordance ranged 296 

from -6% to +7% (Table 1). Ti concentrations were 8-21ppm (Fig. 6). The REE patterns are typical of 297 

that expected for zircon but Yb/Gd ratios are lower than those recorded by Kelly and Harley (2005a) 298 

(Fig. 7b). 299 

 300 

Discussion 301 

Origin of the Lattice Distortion 302 

 It is outside the scope of this contribution to give a detailed description of the origin of 303 

distortion but it is relevant particularly in regard to the time at which distortion originated. Crystals 304 

with lattice distortion may have grown with defects (Penn and Banfield, 1998)  and therefore have 305 

had a distorted lattice from the time of their initial formation; alternatively, post-crystallisation 306 

plastic deformation may occur through movement of lattice dislocations: if some of these remain in 307 

the lattice then it may be distorted. Little is known about zircon deformation so the general 308 

appearance of microstructures in other minerals is drawn upon to aid interpretation of the 309 
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microstructure in the distorted zircons in this study. A new method of analysing lattice distortion is 310 

applied, which gives some information on the Burgers vectors of the geometrically necessary 311 

dislocations responsible for distortion (Wheeler et al., 2009). In brief, the “integration” version of 312 

this method gives the net Burgers vector of all the dislocations passing through any chosen area on 313 

an EBSD map. These dislocations may be uniformly distributed, non-uniformly distributed or form 314 

subgrain walls.  315 

 The Weighted Burgers Vector (WBV) is expressed crystallographically, and is best presented 316 

normalised to the area of the loop (Fig. 9 and Table 5), so it is measured in (µm)-2 or 1012 m-2 (the 317 

former unit is more convenient). An example of the meaning of the WBV in Table 5 is as follows. A 318 

loop of square outline 10 µm x 5 µm, with a WBV of (1, 0, 4) (µm)-2, could mean that there are 50 319 

dislocation lines with Burgers vector [100] and 200 lines with Burgers vector [001] passing through 320 

the square. Alternatively, it could mean that there are 50 dislocation lines with Burgers vector [104]. 321 

The WBV is an average over the areas of the loop and the types of dislocation threading through that 322 

loop – it proves useful, in trigonal, tetragonal and hexagonal phases, for distinguishing Burgers 323 

vectors lying in the basal plane from others. The Burgers vectors of dislocations are relevant for 324 

understanding the origins of distortion in all crystalline materials. For example, in quartz, Burgers 325 

vectors lie in the basal plane for low temperature deformation but can be parallel to the c axis for 326 

higher temperature deformation (e.g. Lister and Dornsiepen, 1982). The relative magnitudes of the 327 

(symmetrically equivalent) a and b components, and the c component which lies parallel to the 4-328 

fold symmetry axis, are now discussed. 329 

WBV data are overlaid on Texture Component EBSD maps for each of the distorted crystals 330 

(Fig. 9). Zircons GG09/1 and BP06/3 both have lattice distortion patterns suggestive of plastic 331 

deformation: the WBV shows variable directions probably due to a mix of dislocations with different 332 

Burgers vectors, and there are irregularly shaped subgrain walls. The irregular shapes are 333 

indistinguishable from subgrain wall morphologies seen in quartz (e.g. Gleason et al., 1993; Stipp 334 

and Tullis, 2003; Heilbronner and Tullis, 2006) and olivine (e.g. Drury, 2005). The distortion of one tip 335 
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of zircon GG09/1 suggests that that particular part of the crystal has been bent, showing that strain 336 

uptake in the zircon lattice was heterogeneous in its distribution. In zircon BP06/3, the subgrain 337 

structure with parallel subgrain walls also indicates bending of the lattice in a similar fashion. Zircon 338 

ST02/2 may also have had its lattice bent by plastic deformation. In zircon DP02/2, there is a crude 339 

radial pattern of subgrain walls around a slightly misoriented part. This could be a deformation 340 

microstructure influenced by the strength heterogeneity caused by the misoriented part, or it is 341 

conceivably caused by growth defects. The cross-hatched misorientation pattern in zircon DP02/7 is 342 

most unusual, with straight parallel subgrain walls. Boyle et al., (1998) found similar “checkerboard” 343 

microstructures in pyrite which were interpreted as being formed by slip parallel to the [100] planes. 344 

This suggests that the microstructure in zircon DP02/7 might be a deformation microstructure but it 345 

is yet more regular than the pyrite example. In addition to this, the WBV measurements are 346 

dominated by components lying in the a and b plane (the basal plane), suggesting that the cross-347 

hatched misorientation pattern in zircon DP02/7 is a growth microstructure.  348 

 349 

Trace Element Behaviour in Relation to Lattice Distortion 350 

 Before we discuss our interpretation, we outline two distinct ways in which a distorted 351 

lattice may influence chemistry. First, defects form fast diffusion pathways (Hart, 1957). Planar and 352 

linear defects can provide connections to the grain boundary network and hence provide pathways 353 

for chemical exchange between crystal and surroundings, as proposed for zircon by Reddy et al. 354 

(2006). Some lattice diffusion must be involved too, to move trace elements into or out from the 355 

defects, but over length scales much smaller than the grain size – and hence faster. Reddy et al. 356 

(2006), Timms et al. (2006b) and Timms et al. (2011) proposed that, in general, lattice distortion 357 

allowed enhanced ion movement along fast pathways such as subgrain walls; this generally led to 358 

depletion of trace elements in the zircon. 359 

 Secondly, dislocations and subgrain walls are defects and an equilibrium partitioning of trace 360 

elements between defects and pristine lattice is to be expected. For example, impurity atoms may 361 
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have a higher equilibrium concentration near a dislocation (Cottrell and Bilby, 1949) – since referred 362 

to as a “Cottrell atmosphere” (e.g. Takeuchi and Argon, 1979; Wilde et al., 2000; Zhao et al., 2001). 363 

This is because the defect has a local stress field which modifies the chemical potentials of impurities 364 

(e.g. Larche and Cahn, 1985). A similar effect is to be expected in a subgrain wall since it is an 365 

arrangement of dislocations, as well as at interfaces because although they generally have no long 366 

range stress field, they have a relatively disordered structure and hence can incorporate higher 367 

concentrations of trace elements (e.g. Hiraga et al., 2003; Pinilla et al., 2012). This was found to 368 

occur in olivine by Ando et al. (2001): Fe partitions preferentially  into subgrain walls. Equilibrium 369 

concentrations will vary only very close to the defects: for example the stress field of a dislocation 370 

dies away over a length scale of the order of the Burgers vector. However, the introduction of a 371 

subgrain wall into a lattice would likely cause trace elements to diffuse from the pristine lattice into 372 

the wall, thus creating larger scale chemical variations if diffusion gradients are frozen in. This would 373 

lower the concentration in the lattice but keep the average concentration fixed.  374 

 These two separate effects of distorted lattice on chemistry, which are not mutually 375 

exclusive, must form the foundation for our discussion. Generally, when we note a correlation 376 

between lattice distortion and trace element concentrations from spots including distorted lattice, 377 

we favour the first explanation (fast diffusion pathways).  This is because a “repartitioning” of trace 378 

elements between lattice and subgrain walls as a result of distortion would not change the average 379 

concentration over a spot which encompassed several walls. In contrast, establishing a fast 380 

connection to the grain surroundings would facilitate a variety of changes in concentration, 381 

depending on the surrounding chemistry.  382 

 As “repartitioning” would not change the average concentration over an ion microprobe 383 

analytical spot, the same would apply for a whole-grain TIMS analysis. While we focus on effects of 384 

lattice distortion on trace elements measured by ion microprobe in this study, TIMS is also widely 385 

used in zircon geochronology and so it is instructive to discuss the potential whole-grain effects of 386 

lattice distortion. Subgrain walls acting as fast diffusion pathways appear to be the key facilitator of 387 
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chemical alteration and so the volume of zircon in which these are present would be expected to be 388 

roughly proportional to the degree of chemical disturbance. For example, a high resolution ion 389 

microprobe spot which sampled subgrain wall would be expected to have a different chemical 390 

signature to a spot which sampled pristine lattice in another part of the same grain. A whole grain 391 

TIMS analysis, however, would record a chemical signature somewhere between that of the two ion 392 

microprobe spots. While a detailed study of this is beyond the scope of this study, it may be worth 393 

consideration in TIMS geochronological studies.  394 

 395 

Comparison of Distorted and Undistorted Zircons 396 

U-Th-Pb  397 

 As U-Pb zircon dating is a widely used technique, it is important to understand the effects of 398 

lattice distortion on U-Th-Pb systematics. Th/U ratios of 1.8-3.2 in zircon BP06/3 were generally 399 

higher than those of the undistorted comparison zircons from the same sample (generally in the 400 

range of 0.6-2.2) (Fig. 5a). The bulk U and Th contents in this zircon were among the highest in the 401 

whole population but this is not interpreted to be related to lattice distortion – an undistorted zircon 402 

located ~8mm away also has high Th and U and this is interpreted to be a due to local Th and U 403 

availability during growth or metamorphic recrystallization. Zircons DP02/2 and DP02/7 had Th/U 404 

ratios of 0.49 and 0.28, respectively, which fall within the range of the comparison zircons from 405 

sample DP01 (0.15-1.54) but are lower than the average of 0.6 (Fig. 5a).  406 

 Seven of the eight youngest apparent 207Pb/206Pb ages in the population (n = 45) are from 407 

distorted zircons (Fig. 5b). The five ages from zircon BP06/3 are discordant by +0.5% to -3%. Timms 408 

et al., (2006b) noted that reverse discordance may be explained by U loss through open-system 409 

behaviour during bending of the lattice. In this study, however, the discordance is within error of 410 

concordia at 2σ confidence levels and may therefore be an analytical artefact. The five ages from 411 

this zircon are younger than, and not within 2σ error of, previously published ages of 2490Ma for a 412 

tectonothermal event in the Central Region/Assynt Terrane (Corfu et al., 1994; Friend and Kinny, 413 
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1995). A small amount of Pb-loss from the lattice during lattice distortion would give an age slightly 414 

younger than crystallisation, suggesting plastic deformation occurred at ~2490Ma. This distorted 415 

zircon was sampled from within a few metres of a member of the Scourie Dyke Swarm which 416 

intruded at ~2000-2400Ma (Heaman and Tarney, 1989). It is possible that an increase in 417 

temperature caused by the nearby intrusion of the hot dyke material caused the small amount of Pb 418 

lost, shifting the analytical data-points a short distance down the concordia curve. As this is not 419 

recorded in undistorted zircons, the temperature increase may have been just enough to cause 420 

diffusion of Pb in distorted zircon lattice but not undistorted zircon lattice. 421 

 Zircons DP02/2 and DP02/7 give ages that are younger than all the other analysed zircons in 422 

this study, with or without lattice distortion. They are relatively discordant (+6.28% and +8.49%, 423 

respectively) and plot below concordia (Fig. 5b). CL images of these two zircons (Fig. 4) do not show 424 

any overgrowths younger than ~2400Ma which the ion microprobe spots could have sampled, 425 

resulting in a mixed age. Their discordant position on the concordia plot (Fig. 5b) is therefore 426 

interpreted to be due to Pb-loss. The position and spatial relationship of the ellipses for DP02/2 and 427 

DP02/7 on a concordia plot line up on a discordia chord with an upper intercept through a cluster of 428 

concordant (+5% to -1%) ages of ~2500Ma from undistorted zircons from samples DP01 and BP06 429 

(Fig. 5c). This discordia has an upper intercept at 2571±51Ma and a lower intercept at 1631±250Ma 430 

with a MSWD of 2.5 at 2σ confidence levels (Fig. 5c). The age cluster at ~2500Ma is interpreted to be 431 

the age of a tectonothermal event – it is the youngest concordant zircon age recorded in the whole 432 

dataset and is also close to the 2490Ma tectonothermal event (the Inverian of Corfu et al. (1994) and 433 

the Badcallian of Kinny et al. (2005)). Although the lower intercept has a large error, it is within error 434 

of published ages for the lower amphibolite-facies Laxfordian tectonothermal event. Kinny and 435 

Friend (1997) and Corfu et al. (1994) give 207Pb/206Pb ages of 1750-1670Ma from rutile and titanite 436 

for the Laxfordian. Therefore, these two zircons could potentially be recording the Laxfordian event 437 

in their U-Pb systematics. An increase in temperature in the Laxfordian may have allowed diffusion 438 

of Pb out of the zircon aided by the inherent lattice distortions. Laxfordian ages are not recorded in 439 
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any undistorted zircons in this study or in previous studies which suggests that lattice distortion 440 

allows Pb diffusion at lower temperatures than in undistorted zircon, effectively locally lowering the 441 

closure temperature.  442 

 443 

Ti Thermometry 444 

 Ti content in zircon increases with equilibration temperature in the presence of rutile– this 445 

forms the basis of the Ti-in-zircon geothermometer derived by Watson et al., (2006). The accuracy of 446 

the temperatures calculated with the Ti-in-zircon thermometer is controlled by aTiO2 – excess rutile in 447 

the rock indicates that the aTiO2 = 1 and Ti content in zircon was buffered. In this case, the calculated 448 

temperatures will be accurate. If there is no rutile present during zircon crystallisation, the system is 449 

not buffered and the calculated temperature will be a minimum. Quartz and accessory rutile is 450 

present in samples BP06, DP02 and DP01 so all zircon temperatures calculated in this study are 451 

interpreted to be accurate.  452 

 Using the updated thermometer calibration of Ferry and Watson (2007), zircon BP06/3 453 

records temperatures of 696±19°C to 752±24°C. Undistorted zircons from this sample record higher 454 

temperatures, ranging from 783±27°C to 834±33°C (Table 2), including one zircon located 455 

approximately 2mm away from distorted zircon BP06/3 which recorded a temperature of 791±28°C. 456 

This indicates that the distorted zircon has lost Ti from its lattice, most likely as a result of lattice 457 

distortion. Zircon DP02/2 yields a crystallisation temperature of 820±32°C which is at the upper end 458 

of the range of 729±22°C to 819±32°C recorded in undistorted zircons from sample DP01. Lattice 459 

distortion is interpreted not to have had any extreme or obvious effects on this particular crystal. In 460 

zircon DP02/7, however, the temperature recorded is 914±44°C, 94° higher than any of the other 461 

zircons in the population. The high temperature recorded by zircon DP02/7 could reflect local Ti 462 

buffering with the other zircons only recording minimum temperatures. However, zircon DP02/2, 463 

located ~8mm from DP02/7, records a temperature 94° lower; this hypothesis would therefore 464 

require a considerable variation in Ti availability over that short distance which seems unlikely. 465 
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Furthermore, accessory rutile is present in samples DP01 and DP02 so the thermometer 466 

temperatures are interpreted to be accurate.  467 

 A more likely explanation is that Ti has partitioned preferentially into the distorted zircon 468 

lattice forming a Cottrell atmosphere as described above. The Ti-in-zircon geothermometer is based 469 

on Ti concentration in pristine lattice. For a given temperature, Ti concentration in a Cottrell 470 

atmosphere will be higher than in pristine lattice and a falsely high temperature will be calculated if 471 

the distortion is not considered. It should also be noted that zircon DP02/7 has many fractures. Care 472 

was taken to place the ion microprobe spot on part of the zircon rim which was not fractured but it 473 

is possible that the analysis may have sampled a fracture beneath the polished surface. Harrison and 474 

Schmidt (2007) showed that Ti was concentrated in fractures and this is another possible 475 

explanation for the high Ti content in this zircon. In summary the Ti abundances in our distorted 476 

zircons (and the zircon megacryst investigated by Timms et al. (2011)) are best explained in terms of 477 

distorted lattices being fast diffusion pathways and zones into which Ti partitions preferentially. 478 

 Zircon DP02/7 appears to have been most extremely affected by lattice distortion but the 479 

degree of misorientation on the subgrain walls is less than that in zircon BP06/3 where the 480 

temperature has been affected by lattice distortion to a lesser degree. This suggests that there is no 481 

correlation between the degree of misorientation and the magnitude of chemical disturbance. 482 

 483 

REEs 484 

 The zircons with no lattice distortion from samples BP06 and DP01 show a typical chondrite-485 

normalised zircon REE pattern of increasing abundance from light to heavy REE, with positive Ce 486 

anomaly and negative Eu anomaly (Kelly and Harley, 2005a). However, Yb/Gd ratios (Fig. 7b) were 487 

generally lower than those recorded by Kelly and Harley (2005a)and there was more than an order 488 

of magnitude of variation in the chondrite-normalised concentration of the heaviest REEs (Fig. 7a). 489 

The REE profiles of undistorted zircons from samples BP06 and DP01 were similar and therefore 490 

pooled for comparison against the zircons with lattice distortion.  491 
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 Distorted zircon BP06/3 generally follows the normal pattern but with some deviation and 492 

heterogeneity within the crystal: spot 3 has a relatively low concentration of heavy REEs and a 493 

slightly flatter heavy REE profile (Yb/Gd = 7); and the Eu anomaly is subdued, with spot 5 actually 494 

having more Eu than Sm, the previous element. The Sm/Nd ratio is low – 1.5-2.5 relative to generally 495 

3-6 in undistorted zircons (Fig. 7c). Spot 1, with the highest chondrite-normalised REE abundance, 496 

falls on the least distorted lattice (Fig. 4c and Table 5), whilst spots 3-5 clearly intersect at least one 497 

subgrain wall, have higher WBV values, and have lower REE abundances. There is not a simple 498 

correlation between WBV values and REE concentration, however. 499 

 The REE abundances of distorted zircon DP02/7 fall within the range of undistorted zircons 500 

but with a subdued Eu anomaly – the negative Eu anomaly is not as pronounced as in undistorted 501 

zircons (Fig. 7a). Zircon DP02/2 also has a subdued Eu anomaly, with more Eu than Sm. It also has a 502 

relatively flat heavy REE pattern, illustrated by a low Yb/Gd ratio of 4. Analyses from both DP02/2 503 

and DP02/7 were from spots which include many subgrain walls (Fig. 4d&e).  504 

 On the whole, REE profiles from distorted zircons are within the range of those from 505 

undistorted zircons. DP02/2 and one analysis from BP06/3 have low Yb/Gd ratios but a small number 506 

of analyses from undistorted zircons also have low Yb/Gd values so the relative depletion in heavy 507 

REEs cannot be confidently ascribed to enhanced diffusion due to lattice distortion. Taken together, 508 

distorted zircon DP02/2, DP02/7 and BP06/3 show a tentative correlation between distortion and 509 

lower REE concentrations, particularly heavy REEs. This cannot be explained by “Cottrell 510 

atmospheres” of REEs because we expect higher concentrations around defects. Cherniak et al. 511 

(1997) showed that heavy REEs diffuse faster than lighter REEs in an undistorted zircon lattice. 512 

Diffusion rates would increase with the fast volume diffusion pathways created by lattice distortion 513 

and result in the flattening of the middle-heavy REE pattern. A change in partition coefficients 514 

between zircons and other phases due to changing pressure-temperature conditions a possible 515 

driver for diffusion – the different patterns from DP02/2 and DP02/7 may be influenced by spot size 516 

relative to grain size and defect density. Fluids circulating through the rock may also have been a 517 
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driver for heavy REE loss. Pal et al. (2011) showed that heavy REEs are more strongly complexed with 518 

fluorine-rich fluids than light REEs. 519 

 520 

Implications of Lattice Distortion 521 

 Three of the five distorted zircons were found in samples from Laxfordian shear zones. 522 

These are strongly deformed rocks and it would be reasonable to infer that there is a link between 523 

deformation at the whole-rock scale and lattice distortion of the zircons. However, WBV analysis 524 

suggests that the lattice distortion in zircons DP02/2 and DP02/7 was not caused by plastic 525 

deformation and is therefore unrelated to the shear zone deformation. Zircon BP06/3 is also from a 526 

Laxfordian shear zone and does appear to have been distorted by plastic deformation. However, 527 

whether the plastic deformation is directly related to the shearing is not clear as nine undeformed 528 

zircons were found in the same sample. In samples from shear zones as a whole, a total of three 529 

distorted zircons and twenty-five undistorted zircons were found. One (ST02/2) of fifteen zircon 530 

from metasemipelite samples has a distorted lattice while one (GG09/1) of fifty-five zircons from 531 

non-shear zone TTG gneiss samples has a distorted lattice. That only a small number of zircons were 532 

distorted, even in shear zone rocks, and that they were located in close proximity to undistorted 533 

zircons, indicates there is no clear link between macro-scale deformation and intracrystal zircon 534 

distortion. From this study, it would appear that although lattice distortion has an effect on zircon 535 

trace element abundances and isotope systematics, the frequency of lattice distortion in a 536 

population of zircons is low. It is unlikely to have a major impact on a typical zircon geochronology 537 

study, especially where the least deformed rocks are sampled. Furthermore, given a large population 538 

size, anomalous data yielded by zircons with lattice distortion would be discarded regardless of 539 

whether it is known that the zircons are distorted or not. However, when investigating zircon from 540 

shear zone rocks, for example to date deformation events, there may be a case for EBSD analysis. 541 

 542 

Conclusions 543 
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 Analysis of a range of trace elements and isotopes in a population of zircons from variably 544 

deformed and metamorphosed rocks of the Lewisian Gneiss Complex of northwest Scotland has 545 

raised the following key points: 546 

1. Five of ninety-nine zircons analysed were found to have distorted lattices. Three of these 547 

were from shear zone rocks while one was from a non-shear zone TTG gneiss and the other 548 

from a metasemipelite. 549 

2. Weighted Burgers Vectors analysis suggests that three of the five distorted zircons have 550 

undergone post-crystallisation plastic deformation to distort their crystal lattices; the other 551 

two have lattice distortion patterns not easily explained by plastic deformation and are 552 

instead interpreted to have grown with distorted lattices. 553 

3. Zircon trace element abundances and isotope systematics appear to have been affected by 554 

lattice distortion where it has occurred. Zircon BP06/3 has high Th/U ratios and slightly 555 

young ages reflecting minor Pb loss, relative to zircons from the same sample with no lattice 556 

distortion. There is some intracrystal heterogeneity in Ti content and it is generally relatively 557 

low, yielding five of the youngest seven Ti-in-zircon thermometer temperatures. Rare earth 558 

element (REE) profiles are generally within the range of undistorted zircons although one 559 

analytical spot had a relatively low Yb/Gd ratio. Zircons DP02/2 and DP02/7 differ from 560 

BP06/3 in that Th/U ratios are low and Pb-loss significant. There are differences between 561 

zircons DP02Z2 and DP02Z7, however: DP02Z7 has a significantly higher Ti content while 562 

DP02Z2 has a relatively low Yb/Gd ratio.  563 

4. Differences in trace element abundances and isotope systematics in distorted zircons 564 

relative to undistorted zircons are interpreted to have been facilitated by subgrain walls – a 565 

key feature of lattice distortion in zircon. Trace elements and isotopes would have moved 566 

from undistorted lattice into these subgrain walls as their chemical potential is modified due 567 

to the presence of the dislocations which make up the subgrain wall. Subgrain walls 568 

provided pathways for chemical exchange between crystal and surroundings. 569 
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5. Discordant apparent 207Pb/206Pb ages of 2331±22Ma and 2266±40Ma from two distorted 570 

zircons define a discordia lower intercept within error of the previously recorded age of the 571 

lower-amphibolite-facies Laxfordian tectonothermal event. Undistorted zircons do not 572 

record Laxfordian ages. This suggests that lattice distortion allows Pb diffusion at lower 573 

temperatures than in undistorted zircon. Distorted zircons may therefore record information 574 

about lower temperature geological events not otherwise recorded in undistorted zircons. 575 

Overall, these findings illustrate the variable effects of crystal lattice distortion on trace element 576 

mobility and isotope systematics in zircon. The low frequency of lattice distortion, however, suggests 577 

that lattice distortion would not have a major impact on zircon populations analysed in typical 578 

geochronology studies. There may be a case for conducting EBSD analysis prior to ion microprobe 579 

analysis if the zircons are sourced from highly deformed rocks as the majority of distorted zircons in 580 

this study were found in shear zone rocks.  581 
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Figure Captions 596 

Fig. 1 Location maps: a: Outline map of NW Scotland, shaded areas denote LGC outcrop and dotted 597 
box denotes location of map b; location within British Isles in inset; b: Map of Scourie area showing 598 
the location and geological context of the field localities. 599 

Fig. 2 Maps of field areas from which analysed zircons were obtained; a: Geisgeil; b: Sithean Mor; c: 600 
Badcall Point; d: Duartmore Point; UK grid references given for each locality. 601 

Fig. 3 Petrographic context of the distorted zircons: plane polarised light photomicrographs of each 602 
sample containing a distorted zircon; Hbl = hornblende, Plag – plagioclase, Qtz = quartz, Grt = garnet, 603 
Bt = biotite, Opq = opaque iron oxide. 604 

Fig. 4 BSE images, CL images, lattice misorientation maps and misorientation profiles of the five 605 
zircons with lattice distortion. The lattice misorientation maps were generated using the “Texture 606 
Component” function in the “Tango” module of Channel5 software and illustrate crystallographic 607 
orientation relative to a given point. The misorientation profiles show this relative change along a 608 
transect. The location of the misorientation profiles are shown by the lines on the associated lattice 609 
misorientation maps. Ellipses denote ion microprobe analytical spot locations; on zircon BP06/3, 610 
numbers denote spot numbers referred to in the text. a: GG09/1; b: ST02/2; c: BP06/3; d: DP02/2; e: 611 
DP02/7. 612 

Fig. 5 U-Th-Pb data: a Plot showing Th (ppm) against U (ppm) (with Th/U ratio contoured) of 613 
distorted and undistorted zircons; b Wetherill concordia plot showing the age relationship of 614 
distorted zircons BP06/3, DP02/2 and DP02/7 and undistorted comparison zircons from samples 615 
DP01 and BP06; c Concordia plot showing a discordia chord through the ellipses for DP02/2 and 616 
DP02/7 which has a lower intercept within error of the age of the Laxfordian tectonothermal event. 617 

Fig. 6 Histogram showing the concentrations of Ti in distorted and undistorted zircons. 618 

Fig. 7 Rare earth element (REE) data: a: Matsuda diagram showing REE profiles and concentrations; 619 
shaded area denotes analyses of undistorted comparison zircons, solid lines denote distorted 620 
zircons; values are normalised against chondrite (McDonough and Sun, 1995). b: Histogram of Yb/Gd 621 
ratios of distorted and undistorted zircons. c: Histogram of Sm/Nd ratios of distorted and 622 
undistorted zircons. 623 

Fig. 8 BSE images, lattice misorientation maps and misorientation profiles of examples of zircons 624 
without lattice distortion (a) and zircons with fractures (b). 625 

Fig. 9 Lattice distortion maps (as in Fig. 3) together with the WBV for some example rectangular 626 

subareas. The three numbers listed are the a, b and c components of the WBV, measured in (µm)-2. 627 

 628 

Table Captions 629 

Table 1 Ion microprobe U-Th-Pb data for distorted and undistorted zircons; analysis ID format is 630 

sample name/zircon number-spot number, so BP06/3-1 is spot 1 on zircon 3 from sample BP06. 631 

Table 2 Ion microprobe trace element concentrations (parts per million); Ti Temp denotes 632 

crystallisation temperature calculated using the calibration of Ferry and Watson (2007) 633 

 of the Ti-in-zircon thermometer (Watson et al., 2006). 634 

Table 3 Summary table of microstructural and chemical characteristics of the five distorted zircons. 635 
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Table 4 Samples from which undistorted zircons have been used for comparison with distorted 636 

zircons and the justification for sample choice. 637 

Table 5 Weighted Burgers Vectors (WBV) data. For BP06 the areas correspond approximately to 638 

some of the spots, as indicated. 639 
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a: Zircon GG09/1. Left-right: BSE, CL, Texture Component map, Misorientation Profile

e: Zircon DP02/7. Left-right: BSE, CL, Texture Component map, Misorientation Profile

d: Zircon DP02/2. Left-right: BSE, CL, Texture Component map, Misorientation Profile

c: Zircon BP06/3. Left-right: BSE, CL, Texture Component map, Misorientation Profile

b: Zircon ST02/2. Left-right: BSE, CL, Texture Component map, Misorientation Profile
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Table 1 
 

Analysis ID U (ppm) Th (ppm) Th/U 204Pbc (ppb) 207Pb/ 206Pb 2σ 207Pb/ 235U 2σ 206Pb/ 238U 2σ Error Corr. % Disc. 207Pb/206Pb Age 2σ 

Distorted Zircons              

BP06/3-1 97.1 267.5 2.82 7.3 0.160 0.002 10.170 0.237 0.462 0.010 0.915 0.26 2453 16 

BP06/3-2 101.6 177.4 1.79 7.3 0.158 0.001 10.393 0.259 0.476 0.011 0.964 -3.02 2437 12 

BP06/3-3 128.3 400.8 3.20 5.4 0.158 0.001 10.054 0.243 0.461 0.010 0.927 -0.24 2437 14 

BP06/3-4 114.3 302.7 2.72 5.8 0.157 0.002 10.113 0.252 0.468 0.010 0.881 -2.10 2422 20 

BP06/3-5 133.5 370.5 2.85 5.2 0.159 0.001 10.159 0.225 0.465 0.010 0.947 -0.84 2440 12 

DP02/2-1 86.1 41.3 0.49 7.8 0.149 0.002 8.271 0.229 0.403 0.010 0.883 6.28 2331 22 

DP02/7-1 47.1 13.0 0.28 5.8 0.143 0.003 7.491 0.263 0.379 0.010 0.751 8.49 2266 40 

Undistorted Zircons              

BP06/1-1 49.5 38.4 0.80 2.5 0.170 0.003 10.953 0.333 0.468 0.012 0.810 3.09 2554 30 

BP06/1-2 421.3 294.9 0.72 0.0 0.217 0.001 17.415 0.365 0.583 0.012 0.977 -0.12 2956 8 

BP06/2-1 72.8 66.1 0.93 2.6 0.219 0.003 17.668 0.500 0.585 0.014 0.850 0.12 2973 24 

GMBP06/1-2 20.4 20.2 1.01 1.0 0.182 0.003 12.399 0.456 0.495 0.016 0.858 2.87 2668 32 

GMBP06/2-1 24.4 31.3 1.32 1.5 0.167 0.003 11.107 0.360 0.483 0.013 0.820 -0.54 2526 30 

GMBP06/2-2 30.2 40.0 1.36 0.1 0.189 0.004 14.106 0.514 0.543 0.015 0.757 -2.38 2729 40 

GMBP06/3-1 18.0 12.5 0.71 0.0 0.174 0.004 11.699 0.477 0.488 0.015 0.778 1.29 2595 42 

GMBP06/3-2 21.5 12.9 0.61 2.7 0.163 0.003 10.688 0.329 0.476 0.012 0.808 -1.01 2485 30 

GMBP06/5-1 12.8 7.8 0.62 2.5 0.170 0.004 10.923 0.467 0.467 0.016 0.785 3.14 2552 44 

GMBP06/5-2 52.4 111.5 2.18 1.2 0.186 0.006 12.960 0.532 0.506 0.013 0.609 2.29 2703 54 

GMBP06/6-1 37.8 40.1 1.09 1.5 0.219 0.006 15.330 0.592 0.508 0.015 0.741 10.90 2972 42 

DP01/4-1 15.3 2.2 0.15 0.0 0.166 0.004 10.629 0.369 0.463 0.013 0.788 2.74 2522 36 

DP01/4-2 14.0 2.1 0.16 0.7 0.188 0.006 13.338 0.541 0.514 0.014 0.664 1.82 2725 48 

DP01/6-1 18.3 11.0 0.62 0.3 0.169 0.003 10.605 0.390 0.454 0.014 0.866 5.39 2551 30 

DP01/6-2 17.2 8.8 0.52 0.6 0.166 0.004 10.734 0.417 0.468 0.014 0.793 1.83 2521 38 

DP01/6-3 58.0 87.2 1.54 0.3 0.166 0.004 10.556 0.359 0.460 0.012 0.780 3.21 2521 36 

DP01/6-4 14.7 9.6 0.67 0.0 0.177 0.005 11.725 0.515 0.480 0.015 0.733 3.67 2625 50 
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Table 1 (cont.) 
 

Analysis ID U (ppm) Th (ppm) Th/U 204Pbc (ppb) 207Pb/ 206Pb 2σ 207Pb/ 235U 2σ 206Pb/ 238U 2σ Error Corr. % Disc. 207Pb/206Pb Age 2σ 

Undistorted Zircons (cont.)              

DP01/6-5 18.6 8.9 0.49 1.3 0.171 0.004 10.911 0.407 0.463 0.014 0.797 4.30 2565 36 

DP01/10-1 13.9 5.0 0.37 1.7 0.178 0.007 11.415 0.536 0.465 0.014 0.625 6.53 2634 60 

DP01/10-2 14.5 5.1 0.36 0.8 0.184 0.008 12.208 0.677 0.482 0.015 0.574 5.50 2685 74 

DP01/10-3 15.5 6.6 0.43 4.9 0.158 0.004 9.575 0.368 0.441 0.012 0.725 3.14 2430 44 

GMDP01/1-1 36.5 20.8 0.58 1.3 0.167 0.002 10.596 0.298 0.461 0.011 0.885 3.05 2523 22 

GMDP01/1-2 27.2 10.4 0.39 1.1 0.164 0.003 10.677 0.341 0.471 0.012 0.800 0.59 2502 32 

GMDP01/2-1 15.1 11.7 0.80 0.0 0.225 0.008 19.960 1.007 0.643 0.023 0.715 -6.12 3017 56 

GMDP01/2-2 89.1 105.4 1.21 2.3 0.163 0.001 10.372 0.264 0.463 0.011 0.942 1.23 2482 14 

GMDP01/2-4 149.9 173.2 1.19 2.2 0.192 0.002 13.849 0.360 0.524 0.013 0.952 1.59 2758 12 

GMDP01/2-5 21.2 8.4 0.41 0.3 0.187 0.006 13.130 0.580 0.509 0.016 0.710 2.42 2717 52 

GMDP01/3-1 15.1 7.1 0.48 0.7 0.194 0.010 13.629 0.898 0.508 0.020 0.594 4.71 2780 86 

GMDP01/4-1 14.8 7.8 0.54 1.5 0.164 0.003 10.532 0.381 0.467 0.015 0.876 1.01 2494 28 

GMDP01/4-2 12.3 6.7 0.56 1.0 0.165 0.004 11.116 0.482 0.489 0.017 0.782 -2.41 2506 44 

GMDP01/5-1 81.0 33.8 0.43 5.6 0.198 0.002 14.929 0.398 0.548 0.013 0.916 -0.44 2805 18 

GMDP01/5-2 11.6 6.0 0.53 0.3 0.168 0.004 10.783 0.389 0.464 0.011 0.673 3.29 2542 44 

GMDP01/6-1 5.4 3.2 0.61 1.1 0.203 0.009 14.440 0.822 0.516 0.019 0.651 5.83 2849 70 

GMDP01/6-2 24.2 19.4 0.82 1.1 0.200 0.003 15.491 0.506 0.561 0.016 0.882 -1.60 2827 24 

GMDP01/6-3 65.7 61.0 0.95 2.4 0.201 0.003 15.229 0.475 0.549 0.016 0.916 0.58 2836 20 

GMDP01/7-1 14.7 7.4 0.52 1.0 0.177 0.008 12.006 1.237 0.492 0.045 0.887 1.71 2624 78 

GMDP01/8-1 19.8 13.3 0.69 0.9 0.184 0.007 12.209 0.578 0.482 0.012 0.542 5.59 2686 66 

GMDP01/9-3 58.5 27.9 0.49 1.3 0.164 0.002 10.285 0.281 0.456 0.011 0.898 2.88 2493 20 

 



Table 2 
 

Analysis ID La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Sm/Nd Yb/Gd Ti Ti Temp 2σ 

Distorted Zircons 
                   

BP06ChZ3-1 0.51 85 3.65 6.56 16.1 13.4 33 57 102 172 296 448 597 1003 2.5 18 6.91 712 21 

BP06ChZ3-2 0.55 68 2.42 6.26 14.3 10.0 33 58 104 182 316 491 656 1026 2.3 20 5.72 696 19 

BP06ChZ3-3 0.83 125 6.00 13.32 22.7 20.0 34 38 52 73 128 180 233 383 1.7 7 6.19 703 20 

BP06ChZ3-4 0.61 117 6.08 11.13 18.8 18.5 29 44 70 129 223 345 487 804 1.7 17 10.64 752 24 

BP06ChZ3-5 3.12 117 7.82 12.41 19.2 23.2 36 54 81 131 234 335 479 708 1.5 13 8.10 727 22 

DP02Z2-1 0.81 24 2.55 4.03 11.4 11.9 27 34 39 44 60 67 101 137 2.8 4 20.83 820 32 

DP02Z7-1 0.75 22 1.68 3.39 12.6 11.3 35 67 102 166 268 400 494 773 3.7 14 46.56 914 44 

Undistorted Zircons 
                   

BP06ChZ1-1 0.30 31 1.24 2.64 8.3 8.8 21 24 36 46 65 84 108 166 3.1 5 17.1 799 29 

BP06ChZ1-2 0.46 47 1.57 5.18 21.0 19.2 62 104 180 298 516 814 1178 1977 4.0 19 14.6 783 27 

BP06ChZ2-1 0.26 25 1.06 2.83 21.9 16.2 92 169 294 476 756 1012 1267 1750 7.7 14 15.8 791 28 

GMBP06Z1-2 0.33 29 1.65 2.79 13.9 8.2 41 62 106 159 262 340 445 621 5.0 11 17.9 804 30 

GMBP06Z2-1 0.28 39 1.84 7.05 20.4 13.1 60 97 168 272 386 508 647 1095 2.9 11 16.7 797 29 

GMBP06Z2-2 0.16 39 1.46 5.09 27.4 18.7 113 183 298 456 676 890 1015 1678 5.4 9 18.8 809 30 

GMBP06Z3-1 0.29 27 0.52 1.65 5.2 4.6 42 67 121 179 295 375 464 740 3.1 11 15.4 788 28 

GMBP06Z3-2 0.06 24 0.87 1.63 10.5 4.9 36 57 105 156 270 375 393 698 6.4 11 14.8 784 28 

GMBP06Z5-1 0.44 26 0.40 2.03 9.9 3.2 33 62 94 166 276 377 448 774 4.9 13 15.8 791 28 

GMBP06Z5-2 0.28 43 0.72 2.95 12.7 5.7 70 112 212 365 565 861 1101 1764 4.3 16 14.6 783 27 

GMBP06Z6-1 0.25 36 1.70 5.50 16.6 8.1 75 112 200 318 491 653 807 1222 3.0 11 23.7 834 33 

DP01Z4-1 0.25 36 0.99 2.66 15.1 8.7 55 95 167 257 424 570 725 1074 5.7 13 17.8 803 30 

DP01Z4-2 0.33 32 0.89 2.25 13.2 7.4 49 84 146 232 389 510 626 932 5.8 13 16.4 794 29 

DP01Z6-1 0.58 29 1.80 4.10 16.8 12.6 53 73 118 181 277 365 446 671 4.1 8 17.1 799 29 

DP01Z6-2 0.35 28 1.51 4.11 15.7 12.4 47 74 114 167 262 363 435 648 3.8 9 15.9 791 28 

DP01Z6-3 0.36 31 1.03 2.49 9.5 7.1 24 32 53 75 101 137 160 253 3.8 7 15.1 786 28 

DP01Z6-4 0.47 26 1.82 3.03 14.7 12.9 40 60 95 142 220 304 377 548 4.9 9 17.8 803 30 
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Table 2 (cont.) 
 

Analysis ID La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Sm/Nd Yb/Gd Ti Ti Temp 2σ 

Undistorted Zircons (cont.) 
                  

DP01Z6-5 0.61 27 1.53 4.18 16.5 14.3 48 72 114 172 253 355 453 624 3.9 9 18.6 808 30 

DP01Z10-1 0.83 32 2.10 4.01 15.1 16.8 40 62 97 142 219 280 373 540 3.8 9 20.3 817 31 

DP01Z10-2 0.38 26 1.35 3.44 13.5 9.8 40 60 98 150 221 319 393 565 3.9 10 19.8 814 31 

DP01Z10-3 0.14 24 1.20 2.30 11.1 9.5 29 44 69 113 169 222 280 403 4.8 10 15.8 790 28 

GMDP01Z1-1 0.29 27 0.78 1.18 7.4 4.7 28 50 82 132 222 342 436 690 6.3 16 13.3 774 26 

GMDP01Z1-2 0.21 27 0.98 1.59 8.1 7.5 23 46 83 135 232 341 467 698 5.1 20 8.3 729 22 

GMDP01Z2-1 0.28 21 0.89 2.29 10.8 8.5 33 51 82 121 186 256 339 475 4.7 10 14.9 785 28 

GMDP01Z2-2 0.25 25 0.90 1.48 5.8 6.3 17 30 47 68 112 154 206 305 3.9 12 14.9 785 28 

GMDP01Z2-4 0.30 28 1.08 3.06 16.5 16.5 50 69 94 110 131 141 165 181 5.4 3 14.1 780 27 

GMDP01Z2-5 0.28 20 1.16 2.10 9.2 7.7 28 45 72 110 172 246 309 491 4.4 11 15.1 786 28 

GMDP01Z3-1 0.55 25 1.74 3.68 14.7 13.2 46 79 118 185 289 372 478 714 4.0 10 20.8 819 32 

GMDP01Z4-1 0.24 27 1.58 3.69 12.9 10.7 36 55 88 132 199 270 334 464 3.5 9 10.0 745 24 

GMDP01Z4-2 0.50 26 1.92 3.51 15.3 12.8 43 58 93 139 217 293 379 534 4.4 9 12.8 769 26 

GMDP01Z5-1 0.47 15 0.62 2.04 8.0 9.6 28 44 72 108 175 241 303 491 3.9 11 10.8 753 24 

GMDP01Z5-2 0.35 21 1.17 2.53 8.1 5.6 23 36 56 85 133 166 223 338 3.2 10 17.2 800 29 

GMDP01Z6-1 0.14 24 0.72 1.98 10.0 7.4 29 50 86 137 219 312 429 599 5.0 15 13.7 776 27 

GMDP01Z6-2 0.26 21 0.76 1.55 7.9 8.5 29 47 81 135 225 322 434 645 5.1 15 14.2 780 27 

GMDP01Z6-3 0.29 25 0.80 1.88 8.0 8.2 26 44 71 114 186 272 379 583 4.3 14 13.9 778 27 

GMDP01Z7-1 0.40 25 1.55 3.89 12.4 12.1 40 65 98 149 238 309 391 569 3.2 10 19.3 812 31 

GMDP01Z8-1 0.22 25 0.73 2.12 11.5 8.7 34 59 105 173 281 387 532 846 5.4 16 15.3 788 28 

GMDP01Z9-3 0.08 26 1.05 1.92 10.3 7.3 27 42 59 85 125 159 213 293 5.4 8 13.4 774 27 

 



Table 3 
 

Zircon  Distortion Pattern CL Th/U 207Pb/206Pb Age (Ma) Ti REE Pattern 

Zircon GG09/1 from 
sample GG09 from 
Geisgeil 

Bending at one corner 
of the grain 

Narrow very bright rim, dark and light zones 
partially overprinting earlier oscillatory 
zoning. Two narrow dark lines pass through 
the area of plastic distortion but do not 
appear related to the microstructure 

- - - - 

 Zircon ST02/2 from 
sample ST02 from 
Sithean Mor 

Fairly gentle lattice 
bending across the 
crystal 

Generally quite dark with some irregular 
lighter patches unrelated to microstructure 

- - - - 

Zircon BP06/3-1 
from sample BP06 
from Badcall Point 

Lattice bent in one 
half of the crystal into 
a series of subgrains 

Generally quite dark with patchy slightly 
brighter rim, low density of sinuous dark 
lines 

2.8 - much higher 
than zircons without 
lattice distortion 

2453±16Ma - concordant but slightly 
younger than youngest ages from 
zircons without lattice distortion 

6.9ppm - well below the 
main cluster of Ti 
concentrations 

Typical zircon 
pattern 

Zircon BP06/3-2 
from sample BP06 
from Badcall Point 

Lattice bent in one 
half of the crystal into 
a series of subgrains 

As BP06ChZ3-1 1.8 - higher than 
zircons without 
lattice distortion 

2437±12Ma - concordant but slightly 
younger than youngest ages from 
zircons without lattice distortion 

5.7ppm - well below the 
main cluster of Ti 
concentrations 

Typical zircon 
pattern 

Zircon BP06/3-3 
from sample BP06 
from Badcall Point 

Lattice bent in one 
half of the crystal into 
a series of subgrains 

As BP06ChZ3-1 but with a high density of 
sinuous black lines 

3.2 - about 3x 
higher than zircons 
without lattice 
distortion 

2437±14Ma - concordant but slightly 
younger than youngest ages from 
zircons without lattice distortion 

6.2ppm - well below the 
main cluster of Ti 
concentrations 

Relatively 
depleted in 
heavy REE 
(Yb/Gd = 7) 

Zircon BP06/3-4 
from sample BP06 
from Badcall Point 

Lattice bent in one 
half of the crystal into 
a series of subgrains 

As BP06ChZ3-1, this spot covers some of the 
brighter rim 

2.7 - much higher 
than zircons without 
lattice distortion 

2422±20Ma - concordant but slightly 
younger than youngest ages from 
zircons without lattice distortion 

10.6ppm - below the 
main cluster of Ti 
concentrations 

Typical zircon 
pattern 

Zircon BP06/3-5 
from sample BP06 
from Badcall Point 

Lattice bent in one 
half of the crystal into 
a series of subgrains 

As BP06ChZ3-1 but with a high density of 
sinuous black lines 

2.9 - much higher 
than zircons without 
lattice distortion 

2440±12Ma - concordant but slightly 
younger than youngest ages from 
zircons without lattice distortion 

8.1ppm - well below the 
main cluster of Ti 
concentrations 

Typical zircon 
pattern 

Zircon DP02/2 from 
sample DP02 from 
Duartmore Point 

Folded pattern across 
crystal with possibly 
patchy development 
of subgrain walls 

Medium grey emittance, very bright spot 
near centre, some irregular dark lines 
possibly related to microstructure 

0.5 - within range of 
zircons without 
lattice distortion but 
below average 

2331±22Ma – 6.3% discordance, 
likely due to Pb-loss during the 
Laxfordian tectonothermal event, 
enabled by earlier lattice distortion 

20.8ppm - at the higher 
end of Ti concentrations 
recorded by undistorted 
zircons 

Relatively flat 
heavy REE 
pattern (Yb/Gd 
= 4) 

Zircon DP02/7 from 
sample DP02 from 
Duartmore Point 

Unusual cross-hatched 
pattern 

Very dark core, very bright rim with dark 
fracture lines 

0.3 - within range of 
zircons without 
lattice distortion but 
well below average 

2266±40Ma – 8.5% discordance, 
likely due to Pb-loss during the 
Laxfordian tectonothermal event, 
enabled by earlier lattice distortion 

46.6ppm – 25ppm 
higher than any other 
recorded Ti 
concentrations 

Subdued Eu 
anomaly  
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Table 4 
 
 Sample from which undistorted comparison zircons were obtained 
Distorted 
Zircon 

For U-Pb dating For Th/U For REEs For Ti 

BP06/3 BP06 – same 
sample, and DP01 
– records same 
age spectrum as 
BP06 

BP06 – same sample BP06 – same sample, 
and DP01 – records 
same compositional 
range as JM09/BP06 

BP06 – same 
sample 

DP02/2 BP06 – also a 
Laxfordian shear 
zone, located 
6km away, 
interpreted to 
have underwent 
same 
tectonothermal 
history as DP02, 
and DP01 – 
records same age 
spectrum as BP06 

DP01 – located only 
one metre from 
DP02. While the host 
rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 

DP01 – located only 
one metre from DP02. 
While the host rock is 
heterogeneous in 
composition, these 
zircons are the closest 
geographically and are 
interpreted to offer 
the best comparison of 
trace element 
chemistry, and BP06 – 
records same 
compositional range as 
DP01 

DP01 – located only 
one metre from 
DP02. While the 
host rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 

DP02/7 BP06 – also a 
Laxfordian shear 
zone, located 
6km away, 
interpreted to 
have underwent 
same 
tectonothermal 
history as DP02, 
and DP01 – 
records same age 
spectrum as BP06 

DP01 – located only 
one metre from 
DP02. While the host 
rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 

DP01 – located only 
one metre from DP02. 
While the host rock is 
heterogeneous in 
composition, these 
zircons are the closest 
geographically and are 
interpreted to offer 
the best comparison of 
trace element 
chemistry, and BP06 – 
records same 
compositional range as 
DP01 

DP01 – located only 
one metre from 
DP02. While the 
host rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 
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Table 5 
 

Zircon WBV components (µm)
-2

  

  a b c 
Approx. Ion 

Microprobe Spot 

DP02Z7 5.82 -1.53 0.73  

DP02Z7 0.67 3.06 -0.66  

DP02Z7 -1.54 2.29 0.28  

DP02Z7 3.69 -1.09 0.05  

DP02Z7 -1.95 -1.00 0.44  

DP02Z7 3.47 -0.40 -0.64  

  
   

 

BP06ChZ3 -0.39 0.08 -0.47 1 

BP06ChZ3 0.90 0.46 -1.58  

BP06ChZ3 -0.06 -0.25 -2.65 4 

BP06ChZ3 -0.82 -0.28 0.05 3 

BP06ChZ3 -1.27 -0.29 -2.05 5 

  
   

 

ST02Z2 -0.14 0.04 -0.96  

ST02Z2 -0.35 0.30 0.09  

ST02Z2 -0.56 0.72 -1.46  

ST02Z2 0.30 -0.22 -0.29  

  
   

 

DP02Z2 0.59 -0.33 -0.08  

DP02Z2 -2.53 1.25 -0.11  

DP02Z2 -2.20 1.15 -4.35  

DP02Z2 -1.81 1.04 -0.44  

DP02Z2 -0.51 -1.30 0.37  

  
   

 

GG09Z1 0.03 -0.01 0.13  

GG09Z1 -0.09 0.35 0.19  

GG09Z1 1.00 0.17 0.77  

GG09Z1 0.06 -0.15 -0.22  

GG09Z1 -0.20 0.31 -0.18  
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