29 research outputs found

    Is Promiscuity Associated with Enhanced Selection on MHC-DQα in Mice (genus Peromyscus)?

    Get PDF
    Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQα locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQα locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    Nest desertion is not predicted by cuckoldry in the Eurasian penduline tit

    Get PDF
    Engagement in extra-pair copulations is an example of the abundant conflicting interests between males and females over reproduction. Potential benefits for females and the risk of cuckoldry for males are expected to have important implications on the evolution of parental care. However, whether parents adjust parental care in response to parentage remains unclear. In Eurasian penduline tits Remiz pendulinus, which are small polygamous songbirds, parental care is carried out either by the male or by the female. In addition, one third of clutches is deserted by both male and female. Desertion takes place during the egg-laying phase. Using genotypes of nine microsatellite loci of 443 offspring and 211 adults, we test whether extra-pair paternity predicts parental care. We expect males to be more likely to desert cuckolded broods, whereas we expect females, if they obtain benefits from having multiple sires, to be more likely to care for broods with multiple paternity. Our results suggest that parental care is not adjusted to parentage on an ecological timescale. Furthermore, we found that male attractiveness does not predict cuckoldry, and we found no evidence for indirect benefits for females (i.e., increased growth rates or heterozygosity of extra-pair offspring). We argue that male Eurasian penduline tits may not be able to assess the risk of cuckoldry; thus, a direct association with parental care is unlikely to evolve. However, timing of desertion (i.e., when to desert during the egg-laying phase) may be influenced by the risk of cuckoldry. Future work applying extensive gene sequencing and quantitative genetics is likely to further our understanding of how selection may influence the association between parentage and parental care

    Influence of photoperiod, green food, and water availability on reproduction in male california mice (Peromyscus californicus)

    No full text
    California mice (Peromyscus californicus) breed primarily during the winter rainy season and generally terminate breeding during the dry summer months. This pattern of reproduction could be regulated by day length, availability of green vegetation, or water availability. The effects of photoperiod and green vegetation on reproduction were examined in Experiment 1 by housing adult male P. californicus either in long (LD 14:10) or short (LD 8:16) photoperiods for 10 weeks with ad lib food and water availability. A subset of animals in each photoperiod treatment group also received supplements of fresh spinach thrice weekly. The effects of water availability were examined in Experiment 2 by housing adult males in long day length conditions for 10 weeks with ad lib or restricted (50% of ad lib) water availability. Neither photoperiod nor availability of green plant food significantly affected reproductive function in male California mice, although animals in long days with green food supplements displayed elevation of some reproductive organ masses. Short days did not suppress plasma LH or prolactin levels. Male P. californicus provide extensive care of the young during the short days of winter. The absence of photoperiod-induced changes in prolactin levels is consistent with the observation that elevated plasma prolactin titers are associated with male parental care in this species. In contrast, water restriction (simulated summer drought) reduced reproductive organ masses, as well as plasma levels of prolactin, and may act as an environmental cue to terminate breeding. Thus, water availability may regulate breeding in this species independently of photoperiod and food availability
    corecore