63 research outputs found

    A Computational Method for Prediction of Excretory Proteins and Application to Identification of Gastric Cancer Markers in Urine

    Get PDF
    A novel computational method for prediction of proteins excreted into urine is presented. The method is based on the identification of a list of distinguishing features between proteins found in the urine of healthy people and proteins deemed not to be urine excretory. These features are used to train a classifier to distinguish the two classes of proteins. When used in conjunction with information of which proteins are differentially expressed in diseased tissues of a specific type versus control tissues, this method can be used to predict potential urine markers for the disease. Here we report the detailed algorithm of this method and an application to identification of urine markers for gastric cancer. The performance of the trained classifier on 163 proteins was experimentally validated using antibody arrays, achieving >80% true positive rate. By applying the classifier on differentially expressed genes in gastric cancer vs normal gastric tissues, it was found that endothelial lipase (EL) was substantially suppressed in the urine samples of 21 gastric cancer patients versus 21 healthy individuals. Overall, we have demonstrated that our predictor for urine excretory proteins is highly effective and could potentially serve as a powerful tool in searches for disease biomarkers in urine in general

    Canine ovariohysterectomy: a survey of surgeon concerns and surgical complications encountered by newly graduated veterinarians

    Get PDF
    The objective of this study was to document newly qualified veterinarians’ concerns and surgical complications encountered during canine ovariohysterectomy (cOVH) during the first year of general practice. A questionnaire investigating concerns about cOVH procedures was sent to all final-year veterinary students (group 1) enrolled at five UK universities. Participants were later asked to complete a similar questionnaire 6 months (group 2) and 12 months (group 3) after graduation, which involved grading their concern about different aspects of the cOVH procedure and reporting surgical complications encountered after completing three cOVHs. Responses were compared between different time points. There were 196 respondents in group 1, 55 in group 2, and 36 in group 3. Between groups 1 and 2, there was a statistically significant reduction in the respondents’ levels of concern in every aspect of cOVH (p < .05). Between groups 2 and 3, there was no statistically significant change in respondents’ levels of concern in any aspect of cOVH (pb.21). There was a significant reduction in the number of complications encountered by veterinarians in group 3 (39/102, 38.2%) compared to those in group 2 (117/206, 56.8%) (p ¼ .002). Employers should anticipate high levels of concern regarding all aspects of cOVHs in new graduates, and supervision during the first 6 months may be particularly useful

    A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2

    Get PDF
    Many investigators are currently studying the use of decellularized tissue allografts from human cadavers as scaffolds onto which patients’ cells could be seeded, or as carriers for genetically engineered cells to aid cell transplantation. However, it is difficult to seed cells onto very dense regular connective tissue which has few interstitial spaces. Here, we discuss the development of a chemotactic cell seeding technique using solvent-preserved human meniscus. A chemokinetic response to recombinant human bone morphogenetic protein-2 (rhBMP-2) was observed in a monolayer culture of primary chondrocytes derived from femoral epiphyseal cartilage of 2-day-old rats. The rhBMP-2 significantly increased their migration upto 10 ng/ml in a dose-dependent manner. When tested with solvent-preserved human meniscus as a scaffold, which has few interstitial spaces, rhBMP-2 was able to induce chondrocytes to migrate into the meniscus. After a 3-week incubation, newly-formed cartilaginous extracellular matrix was synthesized by migrated chondrocytes throughout the meniscus, down to a depth of 3 mm. These findings demonstrate that rhBMP-2 may be a natural chemokinetic factor in vivo, which induces migration of proliferative chondrocytes into the narrow interfibrous spaces. Our results suggest a potential application of rhBMP-2 for the designed distribution of chondrocytes into a scaffold to be used for tissue engineering

    Effects of platinum/taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI

    Get PDF
    Dynamic contrast enhanced MRI (DCE-MRI) is being used increasingly in clinical trials to demonstrate that vascular disruptive and antiangiogenic agents target tumour microcirculation. Significant reductions in DCE-MRI kinetic parameters are seen within 4–24 and 48 h of treatment with vascular disruptive and antiangiogenic agents, respectively. It is important to know whether cytotoxic agents also cause significant acute reductions in these parameters, for reliable interpretation of results. This study investigated changes in transfer constant (Ktrans) and the initial area under the gadolinium curve (IAUGC) following the first dose of chemotherapy in patients with mostly gynaecological tumours. A reproducibility analysis on 20 patients (using two scans performed on consecutive days) was used to determine the significance of DCE-MRI parameter changes 24 h after chemotherapy in 18 patients. In 11 patients who received platinum alone or with a taxane, there were no significant changes in Ktrans or IAUGC in either group or individual patient analyses. When the remaining seven patients (treated with a variety of agents including platinum and taxanes) were included (n=18), there were also no significant changes in Ktrans. Therefore, if combination therapy does show changes in DCE-MRI parameters then the effects can be attributed to antivascular therapy rather than chemotherapy

    Modulating the oxygen affinity of human fetal haemoglobin with synthetic allosteric modulators

    No full text
    Improving the delivery of oxygen to the tissues by decreasing the oxygen affinity of haemoglobin has been a major aim of several laboratories over recent years because this may reduce the consequences of anaemia and/or improve tissue oxygenation in cases of decreased blood perfusion. Within the same context, lowering the oxygen affinity may prove valuable in the application of native or recombinant haemoglobin solutions as a blood substitute. The shift of the oxygen equilibrium curve to the right is obtained by various modulators. Among them, the bezafibrate derivatives are considered as a most interesting group. These principles are of the utmost importance in thalassaemia and other haemoglobinopathies where the beneficial effects of the compensatory synthesis of fetal haemoglobin are diminished by the increased oxygen affinity of this pigment. In this paper we present the results of a study initiated to determine whether a potent oxygen affinity modifier, RSR-4, could satisfactorily decrease the oxygen affinity of fetal haemoglobin, thus improving tissue oxygenation. The experiments were carried out on whole blood and on purified haemoglobin solutions and showed that the effector markedly decreased the oxygen affinity of HbF (from 18.7 to 37.3 mmHg in whole blood). At the same time the cooperativity index (n(50)) and the oxygen saturation levels remained within normal limits under the conditions of the main experiment. These observations have important implications for the potential application of oxygen affinity modifiers in vivo
    corecore