14,975 research outputs found
Kinetic Analysis of Discrete Path Sampling Stationary Point Databases
Analysing stationary point databases to extract phenomenological rate
constants can become time-consuming for systems with large potential energy
barriers. In the present contribution we analyse several different approaches
to this problem. First, we show how the original rate constant prescription
within the discrete path sampling approach can be rewritten in terms of
committor probabilities. Two alternative formulations are then derived in which
the steady-state assumption for intervening minima is removed, providing both a
more accurate kinetic analysis, and a measure of whether a two-state
description is appropriate. The first approach involves running additional
short kinetic Monte Carlo (KMC) trajectories, which are used to calculate
waiting times. Here we introduce `leapfrog' moves to second-neighbour minima,
which prevent the KMC trajectory oscillating between structures separated by
low barriers. In the second approach we successively remove minima from the
intervening set, renormalising the branching probabilities and waiting times to
preserve the mean first-passage times of interest. Regrouping the local minima
appropriately is also shown to speed up the kinetic analysis dramatically at
low temperatures. Applications are described where rates are extracted for
databases containing tens of thousands of stationary points, with effective
barriers that are several hundred times kT.Comment: 28 pages, 1 figure, 4 table
Cost-Effective Use of Silver Dressings for the Treatment of Hard-to-Heal Chronic Venous Leg Ulcers
Aim
To estimate the cost-effectiveness of silver dressings using a health economic model based on time-to-wound-healing in hard-to-heal chronic venous leg ulcers (VLUs).
Background
Chronic venous ulceration affects 1–3% of the adult population and typically has a protracted course of healing, resulting in considerable costs to the healthcare system. The pathogenesis of VLUs includes excessive and prolonged inflammation which is often related to critical colonisation and early infection. The use of silver dressings to control this bioburden and improve wound healing rates remains controversial.
Methods
A decision tree was constructed to evaluate the cost-effectiveness of treatment with silver compared with non-silver dressings for four weeks in a primary care setting. The outcomes: ‘Healed ulcer’, ‘Healing ulcer’ or ‘No improvement’ were developed, reflecting the relative reduction in ulcer area from baseline to four weeks of treatment. A data set from a recent meta-analysis, based on four RCTs, was applied to the model.
Results
Treatment with silver dressings for an initial four weeks was found to give a total cost saving (£141.57) compared with treatment with non-silver dressings. In addition, patients treated with silver dressings had a faster wound closure compared with those who had been treated with non-silver dressings.
Conclusion
The use of silver dressings improves healing time and can lead to overall cost savings. These results can be used to guide healthcare decision makers in evaluating the economic aspects of treatment with silver dressings in hard-to-heal chronic VLUs
Dynamic Limits on Planar Libration-Orbit Coupling Around an Oblate Primary
This paper explores the dynamic properties of the planar system of an
ellipsoidal satellite in an equatorial orbit about an oblate primary. In
particular, we investigate the conditions for which the satellite is bound in
librational motion or when the satellite will circulate with respect to the
primary. We find the existence of stable equilibrium points about which the
satellite can librate, and explore both the linearized and non-linear dynamics
around these points. Absolute bounds are placed on the phase space of the
libration-orbit coupling through the use of zero-velocity curves that exist in
the system. These zero-velocity curves are used to derive a sufficient
condition for when the satellite's libration is bound to less than 90 degrees.
When this condition is not satisfied so that circulation of the satellite is
possible, the initial conditions at zero libration angle are determined which
lead to circulation of the satellite. Exact analytical conditions for
circulation and the maximum libration angle are derived for the case of a small
satellite in orbits of any eccentricity.Comment: Submitted to Celestial Mechanics and Dynamical Astronom
Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins
Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1-2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments
Non-homogenous disks in the chain of matrices
We investigate the generating functions of multi-colored discrete disks with
non-homogenous boundary conditions in the context of the Hermitian multi-matrix
model where the matrices are coupled in an open chain. We show that the study
of the spectral curve of the matrix model allows one to solve a set of loop
equations to get a recursive formula computing mixed trace correlation
functions to leading order in the large matrix limit.Comment: 25 pages, 4 figure
Harnessing optical micro-combs for microwave photonics
In the past decade, optical frequency combs generated by high-Q
micro-resonators, or micro-combs, which feature compact device footprints, high
energy efficiency, and high-repetition-rates in broad optical bandwidths, have
led to a revolution in a wide range of fields including metrology, mode-locked
lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum
optics. Among these, an application that has attracted great interest is the
use of micro-combs for RF photonics, where they offer enhanced functionalities
as well as reduced size and power consumption over other approaches. This
article reviews the recent advances in this emerging field. We provide an
overview of the main achievements that have been obtained to date, and
highlight the strong potential of micro-combs for RF photonics applications. We
also discuss some of the open challenges and limitations that need to be met
for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference
Ligand-based virtual screening using binary kernel discrimination
This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening
Fast and flexible selection with a single switch
Selection methods that require only a single-switch input, such as a button
click or blink, are potentially useful for individuals with motor impairments,
mobile technology users, and individuals wishing to transmit information
securely. We present a single-switch selection method, "Nomon," that is general
and efficient. Existing single-switch selection methods require selectable
options to be arranged in ways that limit potential applications. By contrast,
traditional operating systems, web browsers, and free-form applications (such
as drawing) place options at arbitrary points on the screen. Nomon, however,
has the flexibility to select any point on a screen. Nomon adapts automatically
to an individual's clicking ability; it allows a person who clicks precisely to
make a selection quickly and allows a person who clicks imprecisely more time
to make a selection without error. Nomon reaps gains in information rate by
allowing the specification of beliefs (priors) about option selection
probabilities and by avoiding tree-based selection schemes in favor of direct
(posterior) inference. We have developed both a Nomon-based writing application
and a drawing application. To evaluate Nomon's performance, we compared the
writing application with a popular existing method for single-switch writing
(row-column scanning). Novice users wrote 35% faster with the Nomon interface
than with the scanning interface. An experienced user (author TB, with > 10
hours practice) wrote at speeds of 9.3 words per minute with Nomon, using 1.2
clicks per character and making no errors in the final text.Comment: 14 pages, 5 figures, 1 table, presented at NIPS 2009 Mini-symposi
- …
