353 research outputs found

    Chimpanzees do not take into account what others can hear in a competitive situation

    Get PDF
    Chimpanzees (Pan troglodytes) know what others can and cannot see in a competitive situation. Does this reflect a general understanding the perceptions of others? In a study by Hare et al. (2000) pairs of chimpanzees competed over two pieces of food. Subordinate individuals preferred to approach food that was behind a barrier that the dominant could not see, suggesting that chimpanzees can take the visual perspective of others. We extended this paradigm to the auditory modality to investigate whether chimpanzees are sensitive to whether a competitor can hear food rewards being hidden. Results suggested that the chimpanzees did not take what the competitor had heard into account, despite being able to locate the hiding place themselves by the noise

    Are chimpanzees really so poor at understanding imperative pointing? Some new data and an alternative view of canine and ape social cognition

    Get PDF
    There is considerable interest in comparative research on different species’ abilities to respond to human communicative cues such as gaze and pointing. It has been reported that some canines perform significantly better than monkeys and apes on tasks requiring the comprehension of either declarative or imperative pointing and these differences have been attributed to domestication in dogs. Here we tested a sample of chimpanzees on a task requiring comprehension of an imperative request and show that, though there are considerable individual differences, the performance by the apes rival those reported in pet dogs. We suggest that small differences in methodology can have a pronounced influence on performance on these types of tasks. We further suggest that basic differences in subject sampling, subject recruitment and rearing experiences have resulted in a skewed representation of canine abilities compared to those of monkeys and apes

    Enhancing power density of biophotovoltaics by decoupling storage and power delivery

    Get PDF
    Biophotovoltaic devices (BPVs), which use photosynthetic organisms as active materials to harvest light, have a range of attractive features relative to synthetic and non-biological photovoltaics, including their environmentally friendly nature and ability to self-repair. However, efficiencies of BPVs are currently lower than those of synthetic analogues. Here, we demonstrate BPVs delivering anodic power densities of over 0.5 W m−2, a value five-fold higher than for previously described BPVs. We achieved this through the use of cyanobacterial mutants with increased electron export characteristics together with a microscale flowbased design that allowed independent optimisation of the charging and power delivery processes, as well as membrane-free operation by exploiting laminar flow to separate the catholyte and anolyte streams. These results suggest that miniaturisation of active elements and flow control for decoupled operation and independent optimisation of the core processes involved in BPV design are effective strategies for enhancing power output and thus the potential of BPVs as viable systems for sustainable energy generation

    Differences in the Cognitive Skills of Bonobos and Chimpanzees

    Get PDF
    While bonobos and chimpanzees are both genetically and behaviorally very similar, they also differ in significant ways. Bonobos are more cautious and socially tolerant while chimpanzees are more dependent on extractive foraging, which requires tools. The similarities suggest the two species should be cognitively similar while the behavioral differences predict where the two species should differ cognitively. We compared both species on a wide range of cognitive problems testing their understanding of the physical and social world. Bonobos were more skilled at solving tasks related to theory of mind or an understanding of social causality, while chimpanzees were more skilled at tasks requiring the use of tools and an understanding of physical causality. These species differences support the role of ecological and socio-ecological pressures in shaping cognitive skills over relatively short periods of evolutionary time

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception

    Dogs (Canis familiaris), but Not Chimpanzees (Pan troglodytes), Understand Imperative Pointing

    Get PDF
    Chimpanzees routinely follow the gaze of humans to outside targets. However, in most studies using object choice they fail to use communicative gestures (e.g. pointing) to find hidden food. Chimpanzees' failure to do this may be due to several difficulties with this paradigm. They may, for example, misinterpret the gesture as referring to the opaque cup instead of the hidden food. Or perhaps they do not understand informative communicative intentions. In contrast, dogs seem to be skilful in using human communicative cues in the context of finding food, but as of yet there is not much data showing whether they also use pointing in the context of finding non-food objects. Here we directly compare chimpanzees' (N = 20) and dogs' (N = 32) skills in using a communicative gesture directed at a visible object out of reach of the human but within reach of the subject. Pairs of objects were placed in view of and behind the subjects. The task was to retrieve the object the experimenter wanted. To indicate which one she desired, the experimenter pointed imperatively to it and directly rewarded the subject for handing over the correct one. While dogs performed well on this task, chimpanzees failed to identify the referent. Implications for great apes' and dogs' understanding of human communicative intentions are discussed

    Gaze following in an asocial reptile (Eublepharis macularius)

    Get PDF
    Gaze following is the ability to utilise information from another's gaze. It is most often seen in a social context or as a reflexive response to interesting external stimuli. Social species can potentially reveal utilisable knowledge about another's future intentions by attending to the target of their gaze. However, in even more fundamental situations, being sensitive to another's gaze can also be useful such as when it can facilitate greater foraging efficiency or lead to earlier predator detection. While gaze sensitivity has been shown to be prevalent in a number of social species, little is currently known about the potential for gaze following in asocial species. The current study investigated whether an asocial reptile, the leopard gecko (Eublepharis macularius), could reliably use the visual indicators of attention to follow the gaze of a conspecific around a barrier. We operated three trial conditions and found subjects (N = 6) responded significantly more to the conspecific demonstrator looking up at a laser stimulus projected onto an occluder during the experimental condition compared to either of two control conditions. The study's findings point toward growing evidence for gaze-following ability in reptiles, who are typically categorised as asocial. Furthermore, our findings support developing comparative social cognition research showing the origins of gaze following and other cognitive behaviours that may be more widely distributed across taxonomic groups than hitherto thought

    Development of Gaze Following Abilities in Wolves (Canis Lupus)

    Get PDF
    The ability to coordinate with others' head and eye orientation to look in the same direction is considered a key step towards an understanding of others mental states like attention and intention. Here, we investigated the ontogeny and habituation patterns of gaze following into distant space and behind barriers in nine hand-raised wolves. We found that these wolves could use conspecific as well as human gaze cues even in the barrier task, which is thought to be more cognitively advanced than gazing into distant space. Moreover, while gaze following into distant space was already present at the age of 14 weeks and subjects did not habituate to repeated cues, gazing around a barrier developed considerably later and animals quickly habituated, supporting the hypothesis that different cognitive mechanisms may underlie the two gaze following modalities. More importantly, this study demonstrated that following another individuals' gaze around a barrier is not restricted to primates and corvids but is also present in canines, with remarkable between-group similarities in the ontogeny of this behaviour. This sheds new light on the evolutionary origins of and selective pressures on gaze following abilities as well as on the sensitivity of domestic dogs towards human communicative cues

    What You See Is What You Get? Exclusion Performances in Ravens and Keas

    Get PDF
    BACKGROUND:Among birds, corvids and parrots are prime candidates for advanced cognitive abilities. Still, hardly anything is known about cognitive similarities and dissimilarities between them. Recently, exclusion has gained increasing interest in comparative cognition. To select the correct option in an exclusion task, one option has to be rejected (or excluded) and the correct option may be inferred, which raises the possibility that causal understanding is involved. However, little is yet known about its evolutionary history, as only few species, and mainly mammals, have been studied. METHODOLOGY/PRINCIPAL FINDINGS:We tested ravens and keas in a choice task requiring the search for food in two differently shaped tubes. We provided the birds with partial information about the content of one of the two tubes and asked whether they could use this information to infer the location of the hidden food and adjust their searching behaviour accordingly. Additionally, this setup allowed us to investigate whether the birds would appreciate the impact of the shape of the tubes on the visibility of food. The keas chose the baited tube more often than the ravens. However, the ravens applied the more efficient strategy, choosing by exclusion more frequently than the keas. An additional experiment confirmed this, indicating that ravens and keas either differ in their cognitive skills or that they apply them differently. CONCLUSION:To our knowledge, this is the first study to demonstrate that corvids and parrots may perform differently in cognitive tasks, highlighting the potential impact of different selection pressures on the cognitive evolution of these large-brained birds
    corecore