699 research outputs found

    Importance of Variant Interpretation in Whole-Exome Molecular Autopsy: Population-Based Case Series.

    Get PDF
    BACKGROUND: Potentially lethal cardiac channelopathies/cardiomyopathies may underlie a substantial portion of sudden unexplained death in the young (SUDY). The whole-exome molecular autopsy represents the latest approach to postmortem genetic testing for SUDY. However, proper variant adjudication in the setting of SUDY can be challenging. METHODS: From January 2012 through December 2013, 25 consecutive cases of SUDY from 1 to 40 years of age (average age at death 27±5.7 years; 13 white, 12 black) from Cook County, Illinois, were referred after a negative (n=16) or equivocal (n=9) conventional autopsy. A whole-exome molecular autopsy with analysis of 99 sudden death-susceptibility genes was performed. The predicted pathogenicity of ultrarare, nonsynonymous variants was determined using the American College of Medical Genetics guidelines. RESULTS: Overall, 27 ultrarare nonsynonymous variants were seen in 16/25 (64%) victims of SUDY. Among black individuals, 9/12 (75%) had an ultrarare nonsynonymous variant compared with 7/13 (54%) white individuals. Of the 27 variants, 10 were considered pathogenic or likely pathogenic in 7/25 (28%) individuals in accordance with the American College of Medical Genetics guidelines. Pathogenic/likely pathogenic variants were identified in 5/16 (31%) of autopsy-negative cases and in 2/6 (33%) victims of SUDY with equivocal findings of cardiomyopathy. Overall, 6 pathogenic/likely pathogenic variants in 4/25 (16%) cases were congruent with the phenotypic findings at autopsy and therefore considered clinically actionable. CONCLUSIONS: Whole-exome molecular autopsy with gene-specific surveillance is an effective approach for the detection of potential pathogenic variants in SUDY cases. However, systematic variant adjudication is crucial to ensure accurate and proper care for surviving family members

    Triadin Knockout Syndrome Is Absent in a Multi-Center Molecular Autopsy Cohort of Sudden Infant Death Syndrome and Sudden Unexplained Death in the Young and Is Extremely Rare in the General Population

    Get PDF
    Background: Triadin knockout syndrome (TKOS) is a potentially lethal arrhythmia disorder caused by recessively inherited null variants in TRDN-encoded cardiac triadin. Despite its malignant phenotype, the prevalence of TKOS in sudden infant death syndrome and sudden unexplained death in the young is unknown. Methods: Exome sequencing was performed on 599 sudden infant death syndrome and 258 sudden unexplained death in the young cases. Allele frequencies of all TRDN null variants identified in the cardiac-specific isoform of TRDN in the Genome Aggregation Database were used to determine the estimated prevalence and ethnic distribution of TKOS. Results: No triadin null individuals were identified in 599 sudden infant death syndrome and 258 sudden unexplained death in the young exomes. Using the Genome Aggregation Database, we estimate the overall prevalence of TKOS to be ≈1:22.7 million individuals. However, TKOS prevalence is 5.5-fold higher in those of African descent (≈1:4.1 million). Conclusions: TKOS is an exceedingly rare clinical entity that does not contribute meaningfully to either sudden infant death syndrome or sudden unexplained death in the young. However, despite its rarity and absence in large sudden death cohorts, TKOS remains a malignant and potentially lethal disorder which requires further research to better care for these patients

    Novel Characteristics of Valveless Pumping

    Get PDF
    This study investigates the occurrence of valveless pumping in a fluidfilled system consisting of two open tanks connected by an elastic tube. We show that directional flow can be achieved by introducing a periodic pinching applied at an asymmetrical location along the tube, and that the flow direction depends on the pumping frequency. We propose a relation between wave propagation velocity, tube length, and resonance frequencies associated with shifts in the pumping direction using numerical simulations. The eigenfrequencies of the system are estimated from the linearized system, and we show that these eigenfrequencies constitute the resonance frequencies and the horizontal slope frequencies of the system; 'horizontal slope frequency' being a new concept. A simple model is suggested, explaining the effect of the gravity driven part of the oscillation observed in response to the tank and tube diameter changes. Results are partly compared with experimental findings.Art. no. 22450

    A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms

    Get PDF
    Introduction: Combined infections from Candida albicans and Staphylococcus aureus are a leading cause of death in the developed world. Evidence suggests that Candida enhances the virulence of Staphylococcus—hyphae penetrate through tissue barriers, while S. aureus tightly associates with the hyphae to obtain entry to the host organism. Indeed, in a biofilm state, C. albicans enhances the antimicrobial resistance characteristics of S. aureus. The association of these microorganisms is also associated with significantly increased morbidity and mortality. Due to this tight association we hypothesised that metabolic effects were also in evidence. Objectives: To explore the interaction, we used a novel GC-Orbitrap-based mass spectrometer, the Q Exactive GC, which combines the high peak capacity and chromatographic resolution of gas chromatography with the sub-ppm mass accuracy of an Orbitrap system. This allows the capability to leverage the widely available electron ionisation libraries for untargeted applications, along with expanding accurate mass libraries and targeted matches based around authentic standards. Methods: Optimised C. albicans and S. aureus mono- and co-cultured biofilms were analysed using the new instrument in addition to the fresh and spent bacterial growth media. Results: The targeted analysis experiment was based around 36 sugars and sugar phosphates, 22 amino acids and five organic acids. Untargeted analysis resulted in the detection of 465 features from fresh and spent medium and 405 from biofilm samples. Three significantly changing compounds that matched to high scoring library fragment patterns were chosen for validation. Conclusion: Evaluation of the results demonstrates that the Q Exactive GC is suitable for metabolomics analysis using a targeted/untargeted methodology. Many of the results were as expected: e.g. rapid consumption of glucose and fructose from the medium regardless of the cell type. Modulation of sugar-phosphate levels also suggest that the pentose phosphate pathway could be enhanced in the cells from co-cultured biofilms. Untargeted metabolomics results suggested significant production of cell-wall biosynthesis components and the consumption of non-proteinaceous amino-acids

    Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis.

    Get PDF
    Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis

    Privacy in crowdsourcing:a systematic review

    Get PDF
    The advent of crowdsourcing has brought with it multiple privacy challenges. For example, essential monitoring activities, while necessary and unavoidable, also potentially compromise contributor privacy. We conducted an extensive literature review of the research related to the privacy aspects of crowdsourcing. Our investigation revealed interesting gender differences and also differences in terms of individual perceptions. We conclude by suggesting a number of future research directions.</p

    Dysfunction of NaV1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study.

    Get PDF
    BACKGROUND: Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.4, which is encoded by the gene SCN4A. Variants in NaV1.4 that directly alter skeletal muscle excitability can cause myotonia, periodic paralysis, congenital myopathy, and myasthenic syndrome. SCN4A variants have also been found in infants with life-threatening apnoea and laryngospasm. We therefore hypothesised that rare, functionally disruptive SCN4A variants might be over-represented in infants who died from SIDS. METHODS: We did a case-control study, including two consecutive cohorts that included 278 SIDS cases of European ancestry and 729 ethnically matched controls without a history of cardiovascular, respiratory, or neurological disease. We compared the frequency of rare variants in SCN4A between groups (minor allele frequency <0·00005 in the Exome Aggregation Consortium). We assessed biophysical characterisation of the variant channels using a heterologous expression system. FINDINGS: Four (1·4%) of the 278 infants in the SIDS cohort had a rare functionally disruptive SCN4A variant compared with none (0%) of 729 ethnically matched controls (p=0·0057). INTERPRETATION: Rare SCN4A variants that directly alter NaV1.4 function occur in infants who had died from SIDS. These variants are predicted to significantly alter muscle membrane excitability and compromise respiratory and laryngeal function. These findings indicate that dysfunction of muscle sodium channels is a potentially modifiable risk factor in a subset of infant sudden deaths. FUNDING: UK Medical Research Council, the Wellcome Trust, National Institute for Health Research, the British Heart Foundation, Biotronik, Cardiac Risk in the Young, Higher Education Funding Council for England, Dravet Syndrome UK, the Epilepsy Society, the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health, and the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program

    Mapping medical careers: Questionnaire assessment of career preferences in medical school applicants and final-year students

    Get PDF
    BACKGROUND: The medical specialities chosen by doctors for their careers play an important part in the workforce planning of health-care services. However, there is little theoretical understanding of how different medical specialities are perceived or how choices are made, despite there being much work in general on this topic in occupational psychology, which is influenced by Holland's RIASEC (Realistic-Investigative-Artistic-Social-Enterprising-Conventional) typology of careers, and Gottfredson's model of circumscription and compromise. In this study, we use three large-scale cohorts of medical students to produce maps of medical careers. METHODS: Information on between 24 and 28 specialities was collected in three UK cohorts of medical students (1981, 1986 and 1991 entry), in applicants (1981 and 1986 cohorts, N = 1135 and 2032) or entrants (1991 cohort, N = 2973) and in final-year students (N = 330, 376, and 1437). Mapping used Individual Differences Scaling (INDSCAL) on sub-groups broken down by age and sex. The method was validated in a population sample using a full range of careers, and demonstrating that the RIASEC structure could be extracted. RESULTS: Medical specialities in each cohort, at application and in the final-year, were well represented by a two-dimensional space. The representations showed a close similarity to Holland's RIASEC typology, with the main orthogonal dimensions appearing similar to Prediger's derived orthogonal dimensions of 'Things-People' and 'Data-Ideas'. CONCLUSIONS: There are close parallels between Holland's general typology of careers, and the structure we have found in medical careers. Medical specialities typical of Holland's six RIASEC categories are Surgery (Realistic), Hospital Medicine (Investigative), Psychiatry (Artistic), Public Health (Social), Administrative Medicine (Enterprising), and Laboratory Medicine (Conventional). The homology between medical careers and RIASEC may mean that the map can be used as the basis for understanding career choice, and for providing career counselling

    Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field

    Full text link
    Motivated by the couplings of the dilaton in four-dimensional effective actions, we investigate the cosmological consequences of a scalar field coupled both to matter and a Maxwell-type vector field. The vector field has a background isotropy-violating component. New anisotropic scaling solutions which can be responsible for the matter and dark energy dominated epochs are identified and explored. For a large parameter region the universe expands almost isotropically. Using that the CMB quadrupole is extremely sensitive to shear, we constrain the ratio of the matter coupling to the vector coupling to be less than 10^(-5). Moreover, we identify a large parameter region, corresponding to a strong vector coupling regime, yielding exciting and viable cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06
    corecore