18 research outputs found

    How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures

    Full text link

    An alternative explanation for cyanobacterial scum formation and persistence by oxygenic photosynthesis

    No full text
    The cause of persistent cyanobacteria scum formation in lakes is an unresolved subject. Scum refers to the event in which cyanobacteria are at the water surface of a lake. Factors like low turbulence levels, long day-light, high water temperatures and the buoyant capacity of cyanobacterial cells play a role in the\u3cbr/\u3eoccurrence of scums. However, they do not explain why scums are observed at periods during the day when according to theory they should have disappeared into the deeper water layers. In this study, we present an alternative explanation. The hypothesis we present here is that irreversible buoyancy of cyanobacteria colonies is created by the growth of gas bubbles on or within the mucilage of the colonies. These bubbles grow under oxygen super-saturated conditions. At low wind speed and high chlorophyll levels, the dissolved oxygen (DO) produced during photosynthesis by cyanobacteria, cannot escape sufficiently fast to the atmosphere hence a DO supersaturated condition arises in the water. At this stage, growth of oxygen bubbles may occur inside or attached to the mucilage. We present results of compression experiments to support our hypothesis. In a chamber, the pressure on lake water containing a natural cyanobacteria population is increased. At 3x10^5 and 4x10^5 Pa the cyanobacteria colonies were not able to float anymore and sank. This pressure is lower than the 10^6 Pa needed to collapse all gas vacuoles inside the cyanobacteria cells (Walsby, 1994). The observed change from floating to sinking colonies due to increased water pressure suggests that gas bubbles were present inside the colonies. In lakes, these gas bubbles may lead to permanent buoyancy, i.e. a persistent scum

    Simulations of the diurnal migration of Microcystis aeruginosa based on a scaling model for physical-biological interactions

    No full text
    This study introduces a coupled flow-biology computational model based on scaling methods and dimensionless numbers. The aim is to illustrate the validity of this model for the investigation of vertical migration of colonies of the cyanobacterium Microcystis aeruginosa under turbulent flow conditions and affected by (light-induced) assimilation/respiration processes. This model connects the distinct time scales of turbulence (typically minutes for the integral time scale) and light-induced mass-density changes of cyanobacteria (diurnal). To compute the full Microcystis vertical migration cycles we combine Direct Numerical Simulations (DNS) of turbulence and this scaling approach. The Microcystis colonies are subjected to turbulence and DNS allows computation of their trajectories with a particle tracking algorithm. The latter is based on a simplified version of the Maxey-Riley equation describing the buoyancy and hydrodynamic forces on the colonies and requires knowledge of the smallest turbulent flow scales (down to the Kolmogorov scale, thus requiring DNS). The coupled flow-biology model proves to capture natural diurnal migration of Microcystis colonies. Under very low turbulence conditions Microcystis shows a quasi-periodic daily migration where the Stokes drag and the buoyancy force are predominant. Higher turbulence conditions override such periodicity, and mix the colonies thoroughly through the water column. Our analysis yields the buoyancy Stokes number Stb, which distinguishes the deterministic buoyancy dominated migration over the more chaotic random colony excursions due to turbulence

    Grazing impacts of the invasive bivalve Limnoperna fortunei (Dunker, 1857) on single-celled, colonial and filamentous cyanobacteria

    No full text
    Feeding behavior of the invasive bivalve Limnoperna fortunei in the presence of single-celled, colonial, and filamentous cyanobacteria was tested in laboratory experiments to evaluate the effects of size and shape on mussel feeding. The first hypothesis holds that golden mussel filters more efficiently smaller particles, such as single cells of Microcystis, which could be more easily assimilated by its filtering apparatus. The second hypothesis sustains that L. fortunei filters more efficiently rounded colonies, such as Microcystis, which would be more easily ingested than lengthy filamentous, such as Planktothrix. Filtration rates of golden mussel in the presence of single-celled, colonial and filamentous cyanobacteria were similar. Nevertheless, there was a great difference in the ingestion and pseudofeces production rates. Single cells were widely accepted as food, while filamentous and colonial cyanobacteria were massively expelled as pseudofeces. The results confirmed the first hypothesis that golden mussel prefers to ingest smaller particles. The second hypothesis was rejected since filamentous were preferentially ingested than colonial cyanobacteria. Golden mussel has the potential to remove toxic cells (Microcystis), however this potential would be reduced in cyanobacteria blooms, where colonial forms which are preferentially rejected by L. fortunei, are predominant. In this case, the presence of this invasive bivalve could also enhance the occurrence of blooms by rejecting colonial and filamentous cyanobacteria in pseudofeces

    Comparing grazing on lake seston by Dreissena and Daphnia: lessons for biomanipulation

    No full text
    Biomanipulation measures in lakes, taken to diminish algal blooms, have mainly been restricted to the reduction of zooplanktivorous fish with the aim to stimulate the grazing pressure by native filter feeders such as Daphnia. However, larger filter feeders like the exotic zebra mussel, Dreissena polymorpha, have been suggested as an optional tool because of their high filtering capacity. We compared grazing by two filter feeders, D. polymorpha and Daphnia galeata, offered seston from Lake IJsselmeer, the Netherlands in two consecutive years: 2002 and 2003. The seston in both years was dominated by the colony-forming cyanobacterium Microcystis aeruginosa. The grazing studies were performed under controlled conditions in the laboratory and samples were analyzed on a flow cytometer, making it possible to quantify grazing on different seston components and size fractions, including cyanobacteria, other phytoplankton (green algae, diatoms, etc.), and detritus. No differences in clearance rates, on a per weight basis, were found between the two grazer species. The clearance rate on cyanobacteria (especially <20 µm) was lower in 2003 than in 2002. In 2003, the microcystin concentration of cyanobacteria was higher than in 2002, suggesting that the observed lower clearance rate in 2003 was due to the enhanced toxin content of the cyanobacteria. Zebra mussels, although indiscriminately filtering all seston groups out of the water, positively selected for phytoplankton in their mantle cavity, irrespective of its toxicity, and rejected detritus. Since no differences in clearance rates were found between the two grazer species, we conclude that for biomanipulation purposes of shallow lakes, native species like the daphnids should be preferred over exotic species like zebra mussels. When the seston is dominated by phytoplankton that cannot be filtered out of the water column by Daphnia, however, the use of zebra mussels may be considered. Care should be taken, however, in the choice of the lakes since the mussels may have severe ecological and economic impacts.

    Feeding selectivity of the invasive mussel Limnoperna fortunei (Dunker, 1857) on a natural phytoplankton assemblage: what really matters?

    Get PDF
    The aims of this work were to analyse the feeding selectivity of L. fortunei in a natural assemblage of phytoplankton in a short-term microcosm experiment and to assess whether this selectivity is affected by the presence of Rotifera as a secondary, palatable feeding resource. This bivalve preferred Desmidiales, Chlorococcales, Euglenophyceae and Chrysophyceae algae with a maximum linear dimension from 20 to 100 µm. Organisms between 500 and 40 × 103 µm3 belonging to Desmidiales, Chrysophyceae and Euglenophyceae were also positively selected. Volvocales, Cryptophyceae and one group of medium-size Euglenophyceae (Trachelomonas sp.) had a high, negative selectivity index independent of their cell shape or size (Ivlev’s index of feeding selectivity  0.8). We concluded that the impact on phytoplankton community structure could be severe, considering that the presence of zooplankton does not have an effect on the majority of phytoplankton groups and that the mussel tends to feed on both items to improve its diet. The negative selection of some phytoplankton taxa is possibly related to the morpho-physiological characteristics of their cell shells.Fil: Frau, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Rojas Molina, Florencia Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Mayora, Gisela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentin
    corecore