146 research outputs found

    Quarantine generated phase transition in epidemic spreading

    Get PDF
    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered (SIR) model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w, and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold w_c separating a phase (w<w_c) where the disease reaches a large fraction of the population, from a phase (w >= w_c) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation, and that w_c increases with the mean degree and heterogeneity of the network. We also find that w_c is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes.Comment: 13 pages, 6 figure

    Assortativity Decreases the Robustness of Interdependent Networks

    Full text link
    It was recently recognized that interdependencies among different networks can play a crucial role in triggering cascading failures and hence system-wide disasters. A recent model shows how pairs of interdependent networks can exhibit an abrupt percolation transition as failures accumulate. We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the two interdependent networks significantly changes the critical density of failures that triggers the total disruption of the two-network system. Specifically, we find that the assortativity (i.e. the likelihood of nodes with similar degree to be connected) within a single network decreases the robustness of the entire system. The results of this study on the influence of assortativity may provide insights into ways of improving the robustness of network architecture, and thus enhances the level of protection of critical infrastructures

    Character evolution and missing (morphological) data across Asteridae

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/1/ajb21050-sup-0007-AppendixS7.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/2/ajb21050_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/3/ajb21050-sup-0019-AppendixS19.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/4/ajb21050-sup-0013-AppendixS13.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/5/ajb21050-sup-0014-AppendixS14.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/6/ajb21050-sup-0012-AppendixS12.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/7/ajb21050-sup-0009-AppendixS9.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/8/ajb21050-sup-0018-AppendixS18.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/9/ajb21050.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/10/ajb21050-sup-0004-AppendixS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/11/ajb21050-sup-0008-AppendixS8.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/12/ajb21050-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/13/ajb21050-sup-0017-AppendixS17.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/14/ajb21050-sup-0006-AppendixS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/15/ajb21050-sup-0011-AppendixS11.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/16/ajb21050-sup-0016-AppendixS16.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/17/ajb21050-sup-0015-AppendixS15.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/18/ajb21050-sup-0010-AppendixS10.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/19/ajb21050-sup-0003-AppendixS3.pd

    Rare region effects at classical, quantum, and non-equilibrium phase transitions

    Full text link
    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions, and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum, and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process.Comment: Topical review, 68 pages, 14 figures, final version as publishe

    The physics of spreading processes in multilayer networks

    Get PDF
    The study of networks plays a crucial role in investigating the structure, dynamics, and function of a wide variety of complex systems in myriad disciplines. Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (i.e., "multiplexity") among their constituent components and/or multiple interacting subsystems. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent "multilayer" approach for modeling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. On one hand, it allows one to couple different structural relationships by encoding them in a convenient mathematical object. On the other hand, it also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.Comment: 25 pages, 4 figure
    corecore