17,117 research outputs found

    An S3S_3 Model for Lepton Mass Matrices with Nearly Minimal Texture

    Full text link
    We propose a simple extension of the electroweak standard model based on the discrete S3S_3 symmetry that is capable of realizing a nearly minimal Fritzsch-type texture for the Dirac mass matrices of both charged leptons and neutrinos. This is achieved with the aid of additional Z5Z_5 and Z3Z_3 symmetries, one of which can be embedded in U(1)B−LU(1)_{B-L}. Five complex scalar singlet fields are introduced in addition to the SM with right-handed neutrinos. Although more general, the modified texture of the model retains the successful features of the minimal texture without fine-tuning; namely, it accommodates the masses and mixing of the leptonic sector and relates the emergence of large leptonic mixing angles with the seesaw mechanism. For large deviations of the minimal texture, both quasidegenerate spectrum or inverted hierarchy are allowed for neutrino masses.Comment: 11pp, 2 figures. v2: vev alignment addressed, additional analysis performed; to appear in PR

    Probing the Effects of Lorentz-Symmetry Violating Chern-Simons and Ricci-Cotton Terms in Higher Derivative Gravity

    Full text link
    The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of operators that splits the fundamental fields according to their individual degrees of freedom. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes gets a new insight. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a time-like vector of the type vμ=(μ,0⃗)v^{\mu} = (\mu,\vec{0}). Spectral consistency imposes taht the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to usual gauge theories whenever conditions for suppression of tachyons and ghosts are required.Comment: 15 pages. It coincides with the version published in Phys. Rev.

    The Quest for an Intermediate-Scale Accidental Axion and Further ALPs

    Get PDF
    The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 101310^{13} GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 10910^9 GeV and 101310^{13} GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1)U(1) (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. We show some models that can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ\gamma-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale.Comment: 43pp, 4 figures. v2: version accepted for publication in JHE

    Monte Carlo Simulations of Ultrathin Magnetic Dots

    Full text link
    In this work we study the thermodynamic properties of ultrathin ferromagnetic dots using Monte Carlo simulations. We investigate the vortex density as a function of the temperature and the vortex structure in monolayer dots with perpendicular anisotropy and long-range dipole interaction. The interplay between these two terms in the hamiltonian leads to an interesting behavior of the thermodynamic quantities as well as the vortex density.Comment: 10 figure

    Astrometry of mutual approximations between natural satellites. Application to the Galilean moons

    Full text link
    Typically we can deliver astrometric positions of natural satellites with errors in the 50-150 mas range. Apparent distances from mutual phenomena, have much smaller errors, less than 10 mas. However, this method can only be applied during the equinox of the planets. We developed a method that can provide accurate astrometric data for natural satellites -- the mutual approximations. The method can be applied when any two satellites pass close by each other in the apparent sky plane. The fundamental parameter is the central instant t0t_0 of the passage when the distances reach a minimum. We applied the method for the Galilean moons. All observations were made with a 0.6 m telescope with a narrow-band filter centred at 889 nm with width of 15 nm which attenuated Jupiter's scattered light. We obtained central instants for 14 mutual approximations observed in 2014-2015. We determined t0t_0 with an average precision of 3.42 mas (10.43 km). For comparison, we also applied the method for 5 occultations in the 2009 mutual phenomena campaign and for 22 occultations in the 2014-2015 campaign. The comparisons of t0t_0 determined by our method with the results from mutual phenomena show an agreement by less than 1-sigma error in t0t_0, typically less than 10 mas. This new method is particularly suitable for observations by small telescopes.Comment: 13 pages, 11 figures and 8 tables. Based on observations made at the Laborat\'orio Nacional de Astrof\'isica (LNA), Itajub\'a-MG, Brazi
    • …
    corecore