86 research outputs found

    Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements

    Get PDF
    International audienceBackground: The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. Results: Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. Conclusions: Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b-M589 occurs only in the east. The absence of R1b-M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks

    The coming of the Greeks to Provence and Corsica: Y-chromosome models of archaic Greek colonization of the western Mediterranean

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of Greek colonization of the central and western Mediterranean during the Archaic and Classical Eras has been understudied from the perspective of population genetics. To investigate the Y chromosomal demography of Greek colonization in the western Mediterranean, Y-chromosome data consisting of 29 YSNPs and 37 YSTRs were compared from 51 subjects from Provence, 58 subjects from Smyrna and 31 subjects whose paternal ancestry derives from Asia Minor Phokaia, the ancestral embarkation port to the 6<sup>th </sup>century BCE Greek colonies of Massalia (Marseilles) and Alalie (Aleria, Corsica).</p> <p>Results</p> <p>19% of the Phokaian and 12% of the Smyrnian representatives were derived for haplogroup E-V13, characteristic of the Greek and Balkan mainland, while 4% of the Provencal, 4.6% of East Corsican and 1.6% of West Corsican samples were derived for E-V13. An admixture analysis estimated that 17% of the Y-chromosomes of Provence may be attributed to Greek colonization. Using the following putative Neolithic Anatolian lineages: J2a-DYS445 = 6, G2a-M406 and J2a1b1-M92, the data predict a 0% Neolithic contribution to Provence from Anatolia. Estimates of colonial Greek vs. indigenous Celto-Ligurian demography predict a maximum of a 10% Greek contribution, suggesting a Greek male elite-dominant input into the Iron Age Provence population.</p> <p>Conclusions</p> <p>Given the origin of viniculture in Provence is ascribed to Massalia, these results suggest that E-V13 may trace the demographic and socio-cultural impact of Greek colonization in Mediterranean Europe, a contribution that appears to be considerably larger than that of a Neolithic pioneer colonization.</p

    HLAIb worldwide genetic diversity: new HLA-H alleles and haplotype structure description

    No full text
    International audienceThe classical HLA class I genes (HLA Ia) were extensively studied because of their implication in clinical fields and anthropology. Less is known about worldwide genetic diversity and linkage disequilibrium for non-classical HLA class I genes (HLA Ib) and HLA pseudogenes. Notably, HLA-H, which is deleted in a fraction of the population, remains scarcely explored. The aims of this study were 1/ to get further insight into HLA-H genetic diversity and into how this variability potentially affects its expression and 2/ to define HLA Ib worldwide allelic diversity and linkage

    Genetic data of 15 STR loci in five populations from Afghanistan

    No full text
    International audienc

    Validation of new HLA‐F alleles assigned by Next Generation Sequencing

    No full text
    International audienceWe describe nine novel HLA-F alleles This article is protected by copyright. All rights reserved

    Complete genetic sequence of 15 novel HLA-H alleles.

    No full text
    International audienceWe describe the full gene sequences of 15 HLA-H alleles. This article is protected by copyright. All rights reserved

    Identification of eleven novel HLA‐A , ‐B, ‐C, ‐ DRB1 and ‐ DQB1 alleles in the 1000 Genomes Project panel

    No full text
    International audienceWe isolated 11 novel HLA alleles in the 1,000 Genomes Project using PolyPheMe software. This article is protected by copyright. All rights reserved

    HLA‐F transcriptional and protein differential expression according to its genetic polymorphisms

    No full text
    International audienceMany specificities single out HLA-F: its structure, expression regulation at cell membrane and function. HLA-F mRNA is detected in the most cell types and the protein is localized in the ER and Golgi apparatus. When expressed at cell surface, HLA-F may be associated to β2-microglobulin and peptide or expressed as an open-conformer molecule. HLA-F reaches the membrane upon activation of different primary cell types and cell-lines. HLA-F has its highest affinity for the KIR3DS1-activating NK receptor, but also binds inhibitory immune receptors. Some studies reported that HLA-F expression is associated with its genotype. Higher HLA-F mRNA expression associated with F*01:01:02, and 3 noncoding SNPs, rs1362126, rs2523405, and rs2523393, located in HLA-F-AS1 or upstream the HLA-F sequence were associated with HLA-F mRNA expression. Given the implication of HLA-F in many clinical setting, and the undisclosed process of its expression regulation, we aim to confirm the effect of the aforementioned SNPs with HLA-F transcriptional and protein expression. We analyzed the distribution, frequency and linkage disequilibrium of these SNPs at worldwide scale in the 1000 Genomes Project samples. Influence on the genotype of each SNP on HLA-F expression was explored using RNAseq data from the 1000 Genomes Project, and using Q-PCR and intracellular cytometry in PBMC from healthy individuals. Our results show that the SNPs under studied displayed remarkably different allelic proportion according to geography and confirm that rs1362126, rs2523405, and rs2523393 displayed the most concordant results, with the highest effect size and a double-dose effect
    corecore