265 research outputs found

    First Record of Leptocybe invasa and Ophelimus maskelli Eucalyptus Gall Wasps in Tunisia

    Get PDF
    Two Australian gall wasps were detected for the first time in Tunisia on the foliage of Eucalyptus camaldulensis trees. Leptocybe invasa was detected in 2004, while Ophelimus maskelli in 2006. L. invasa makes galls on petioles, leaf midribs and young branches whereas O. maskelli induces galls on limbs. Vigilance is recommended when seedlings are carried to plantation

    Influence of oxygen deficiency on optical and dielectric properties of La0.75Ba0.10Sr0.15FeO2.875-δ compounds

    Get PDF
    Using the conventional sol-gel process, the series of non-stoichiometric oxygen lanthanum ferrites with the formula 0.750.100.152.875 ― (δ=0.00, 0.125 and 0.25) were prepared. X-ray diffraction analysis confirmed the formation of the orthorhombic structure with Pnma space group. In the present work, we confirm the potential of 0.750.100.15 2.875 ― (δ=0.00, 0.125 and 0.25) as an efficient dielectric material. All samples show high absorbance in the visible region with wavelength above 300 nm. The optical band gaps are found to increase from 3.25 to 4.1 with increasing oxygen vacancy concentration. The dielectric constant, dielectric loss and loss factor were carried out as a function of oxygen vacancy concentration and frequency (102 -106 Hz) at room temperature. The variation of dielectric constant with frequency indicates dispersive behavior and giant dielectric response (more than 104 ) at low frequencies for compounds deficient in oxygen. Such value of makes ′ these samples an interesting material to be used in applications namely the reduction of electronic components size. To summarize, incorporating vacancy oxygen enhances the dielectric properties. Thus, the interesting dielectric constant and weak loss strengthen the use for potential applications.publishe

    Ultrafast Electrochemical Self-Doping of Anodic Titanium Dioxide Nanotubes for Enhanced Electroanalytical and Photocatalytic Performance

    Get PDF
    This study explores an ultrarapid electrochemical self-doping procedure applied to anodic titanium dioxide (TiO2) nanotube arrays in an alkaline solution to boost their performance for electroanalytical and photocatalytic applications. The electrochemical self-doping process (i.e., the creation of surface Ti3+ states by applying a negative potential) is recently emerging as a simpler and cleaner way to improve the electronic properties of TiO2 compared to traditional chemical and high-temperature doping strategies. Here, self-doping was carried out through varying voltages and treatment times to identify the most performing materials without compromising their structural stability. Interestingly, cyclic voltammetry characterization revealed that undoped TiO2 shows negligible activity, whereas all self-doped materials demonstrate their suitability as electrode materials: an outstandingly short 10 s self-doping treatment leads to the highest electrochemical activity. The electrochemical detection of hydrogen peroxide was assessed as well, demonstrating a good sensitivity and a linear detection range of 3–200 µM. Additionally, the self-doped TiO2 nanotubes exhibited an enhanced photocatalytic activity compared to the untreated substrate: the degradation potential of methylene blue under UV light exposure increased by 25% in comparison to undoped materials. Overall, this study highlights the potential of ultrafast electrochemical self-doping to unleash and improve TiO2 nanotubes performances for electroanalytical and photocatalytic applications

    Hopping conduction mechanism and impedance spectroscopy analyses of La0.70Sr0.25Na0.05Mn0.70Ti0.30O3 ceramic

    Full text link
    The perovskite sample La0.7Sr0.25Na0.05Mn0.7Ti0.3O3 (LSNM0.70T0.30) was produced via a solid-state route process. The frequency dependence of electrical conduction plot established that according to the Jonscher law. The electrical conduction process was based on both theoretical conduction models assigned to the non-overlapping small polaron tunneling model at low temperatures and correlated barrier hopping mechanism at high temperatures. Detailed investigation of impedance data revealed a non-Debye-type relaxation occurring in the polycrystalline. In addition, the dielectric response confirmed the dominance of the Maxwell–Wagner model and Koop’s phenomenological theory effect in conduction phenomenon. The values of permittivity is high for LSNM0.70T0.30 were observed. These values make this composition interesting for microelectric applications. In the thermal study, the relaxation processes observed by electrical conductivity, impedance, and modulus are associated with singly and doubly ionized oxygen vacancies for the lower and higher temperature, respectively. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Majmaah University, MU: R-2021-121The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-2021-121

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table

    The impact of intermittent fasting during Ramadan on psychomotor and cognitive skills in adolescent athletes

    Get PDF
    IntroductionIntermittent fasting (IF) represents a dietary intervention similar to caloric restriction, characterized by the strategic limitation of food consumption. Among the diverse array of practices for IF, Ramadan IF (RIF), a religious observance in Islam, mandates that healthy adult Muslims abstain from both food and drinks during daylight hours. In sports, researchers have extensively studied IF effects on health, including sleep and physical performance, but its impact on cognitive functions during RIF remains understudied. Therefore, this study was conducted to evaluate the influence of RIF on psychomotor and cognitive performance among young female athletes.MethodsTo achieve this purpose, a cohort of 23 female handball players, aged 17.2 ± 0.5 years, participated in a series of six testing sessions: one conducted prior to Ramadan (R0), and others during the first (R1), second (R2), third (R3), and fourth (R4) weeks of Ramadan, followed by a session in the week after Ramadan (R5). Each session involved assessments using a Simple Reaction Time Test (SRT), Choice Reaction Time Test (CRT), Vigilance Test (VT), and Mental Rotation Test (MRT). Additionally, dietary intake, body composition, and Pittsburgh Sleep Quality Index (PSQI) scores were evaluated during these periods.Results and discussionThe obtained data illustrated that there was a decrease in SRT, CRT, VT, and MRT performances during R1 in comparison to R0 (all p < .001). This reduction was also observed in R2, R3, R4, and R5. Notably, during the fourth week of Ramadan (R4), these cognitive and psychomotor parameters were significantly lower than during the earlier weeks (R1, R2, R3; all p < .001). Furthermore, a gradual decrease in total PSQI scores, sleep quality, and sleep duration was observed throughout the Ramadan period, reaching the lowest levels during R4. These findings illustrate that RIF has a significantly detrimental impact on neuromuscular and cognitive abilities as well as sleep quality in young female athletes. The study also highlights a fluctuating pattern in cognitive function across the four weeks of Ramadan, with the most pronounced decline observed during the final week of fasting illustrating the importance of conducting similar studies on normal individuals from both genders with larger sample size
    corecore