202 research outputs found

    A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics

    Get PDF
    Glutamate excitotoxicity leads to fragmented mitochondria in neurodegenerative diseases, mediated by nitric oxide and S-nitrosylation of dynamin-related protein 1, a mitochondrial outer membrane fission protein. Optic atrophy gene 1 (OPA1) is an inner membrane protein important for mitochondrial fusion. Autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1, is a neurodegenerative disease affecting mainly retinal ganglion cells (RGCs). Here, we showed that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress. Opa1enu/+ mice show a slow progressive loss of RGCs, activation of astroglia and microglia, and pronounced mitochondrial fission in optic nerve heads as found by electron tomography. Expression of NMDA receptors (NR1, 2A, and 2B) in the retina of Opa1enu/+ mice was significantly increased as determined by western blot and immunohistochemistry. Superoxide dismutase 2 (SOD2) expression was significantly decreased, the apoptotic pathway was activated as Bax was increased, and phosphorylated Bad and BcL-xL were decreased. Our results conclusively demonstrate that not only glutamate excitotoxicity and/or oxidative stress alters mitochondrial fission/fusion, but that an imbalance in mitochondrial fission/fusion in turn leads to NMDA receptor upregulation and oxidative stress. Therefore, we propose a new vicious cycle involved in neurodegeneration that includes glutamate excitotoxicity, oxidative stress, and mitochondrial dynamics

    ERBB4 confers metastatic capacity in Ewing sarcoma.

    Get PDF
    Metastatic spread is the single-most powerful predictor of poor outcome in Ewing sarcoma (ES). Therefore targeting pathways that drive metastasis has tremendous potential to reduce the burden of disease in ES. We previously showed that activation of the ERBB4 tyrosine kinase suppresses anoikis, or detachment-induced cell death, and induces chemoresistance in ES cell lines in vitro. We now show that ERBB4 is transcriptionally overexpressed in ES cell lines derived from chemoresistant or metastatic ES tumours. ERBB4 activates the PI3K-Akt cascade and focal adhesion kinase (FAK), and both pathways contribute to ERBB4-mediated activation of the Rac1 GTPase in vitro and in vivo. ERBB4 augments tumour invasion and metastasis in vivo, and these effects are blocked by ERBB4 knockdown. ERBB4 expression correlates significantly with reduced disease-free survival, and increased expression is observed in metastatic compared to primary patient-matched ES biopsies. Our findings identify a novel ERBB4-PI3K-Akt-FAK-Rac1 pathway associated with aggressive disease in ES. These results predict that therapeutic targeting of ERBB4, alone or in combination with cytotoxic agents, may suppress the metastatic phenotype in ES

    Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis B-related fibrosis: a leading meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aspartate aminotransferase-to-platelet ratio index (APRI), a tool with limited expense and widespread availability, is a promising noninvasive alternative to liver biopsy for detecting hepatic fibrosis. The objective of this study was to systematically review the performance of the APRI in predicting significant fibrosis and cirrhosis in hepatitis B-related fibrosis.</p> <p>Methods</p> <p>Areas under summary receiver operating characteristic curves (AUROC), sensitivity and specificity were used to examine the accuracy of the APRI for the diagnosis of hepatitis B-related significant fibrosis and cirrhosis. Heterogeneity was explored using meta-regression.</p> <p>Results</p> <p>Nine studies were included in this meta-analysis (n = 1,798). Prevalence of significant fibrosis and cirrhosis were 53.1% and 13.5%, respectively. The summary AUCs of the APRI for significant fibrosis and cirrhosis were 0.79 and 0.75, respectively. For significant fibrosis, an APRI threshold of 0.5 was 84% sensitive and 41% specific. At the cutoff of 1.5, the summary sensitivity and specificity were 49% and 84%, respectively. For cirrhosis, an APRI threshold of 1.0-1.5 was 54% sensitive and 78% specific. At the cutoff of 2.0, the summary sensitivity and specificity were 28% and 87%, respectively. Meta-regression analysis indicated that the APRI accuracy for both significant fibrosis and cirrhosis was affected by histological classification systems, but not influenced by the interval between Biopsy & APRI or blind biopsy.</p> <p>Conclusion</p> <p>Our meta-analysis suggests that APRI show limited value in identifying hepatitis B-related significant fibrosis and cirrhosis.</p

    Adult B lymphoblastic leukaemia/lymphoma with hypodiploidy (-9) and a novel chromosomal translocation t(7;12)(q22;p13) presenting with severe eosinophilia – case report and review of literature

    Get PDF
    Patients suffering from adult acute lymphoblastic leukemia are acutely ill and present most commonly with fever, pallor, bleeding, lymphadenopathy, hepatosplenomegaly and presence of lymphoblasts in the peripheral blood and bone marrow. We describe a rare presentation of acute lymphoblastic leukemia, in a young adult male who had vague and minimal symptoms with mild splenomegaly. There was severe eosinophilia along with absence of blasts in the peripheral blood, and 40% blasts with increase in eosinophils in the bone marrow. The blasts were positive for common precursor B cell markers on flow cytometry. The patient had a unique cytogenetic abnormality t(7;12)(q22;p13),-9, not previously described in acute lymphoblastic leukemia. He was categorized as poor risk due to failure to achieve complete remission after induction with UK ALL XII chemotherapy

    Quorum Sensing Regulation of the Two hcp Alleles in Vibrio cholerae O1 Strains

    Get PDF
    BACKGROUND: The type VI secretion system (T6SS) has emerged as a protein secretion system important to several gram-negative bacterial species. One of the common components of the system is Hcp, initially described as a hemolysin co-regulated protein in a serotype O17 strain of Vibrio cholerae. Homologs to V. cholerae hcp genes have been found in all characterized type VI secretion systems and they are present also in the serotype O1 strains of V. cholerae that are the cause of cholera diseases but seemed to have non-functional T6SS. METHODOLOGY/PRINCIPAL FINDINGS: The serotype O1 V. cholerae strain A1552 was shown to express detectable levels of Hcp as determined by immunoblot analyses using polyclonal anti-Hcp antiserum. We found that the expression of Hcp was growth phase dependent. The levels of Hcp in quorum sensing deficient mutants of V. cholerae were compared with the levels in wild type V. cholerae O1 strain A1552. The expression of Hcp was positively and negatively regulated by the quorum sensing regulators HapR and LuxO, respectively. In addition, we observed that expression of Hcp was dependent on the cAMP-CRP global transcriptional regulatory complex and required the RpoN sigma factor. CONCLUSION/SIGNIFICANCE: Our results show that serotype O1 strains of V. cholerae do express Hcp which is regarded as one of the important T6SS components and is one of the secreted substrates in non-O1 non-O139 V. cholerae isolates. We found that expression of Hcp was strictly regulated by the quorum sensing system in the V. cholerae O1 strain. In addition, the expression of Hcp required the alternative sigma factor RpoN and the cAMP-CRP global regulatory complex. Interestingly, the environmental isolates of V. cholerae O1 strains that showed higher levels of the HapR quorum sensing regulator in comparison with our laboratory standard serotype O1 strain A1552 where also expressing higher levels of Hcp

    Integrin-Linked Kinase Overexpression and Its Oncogenic Role in Promoting Tumorigenicity of Hepatocellular Carcinoma

    Get PDF
    Background: Integrin-linked kinase (ILK) was first discovered as an integrin β1-subunit binding protein. It localizes at the focal adhesions and is involved in cytoskeleton remodeling. ILK overexpression and its dysregulated signaling cascades have been reported in many human cancers. Aberrant expression of ILK influenced a wide range of signaling pathways and cellular functions. Although ILK has been well characterized in many malignancies, its role in hepatocellular carcinoma (HCC) is still largely unknown. Methodology/Principal Findings: Quantitative PCR analysis was used to examine ILK mRNA expression in HCC clinical samples. It was shown that ILK was overexpressed in 36.9% (21/57) of HCC tissues when compared to the corresponding non-tumorous livers. The overall ILK expression level was significantly higher in tumorous tissues (P = 0.004), with a significant stepwise increase in expression level along tumor progression from tumor stage I to IV (P = 0.045). ILK knockdown stable clones were established in two HCC cell lines, BEL7402 and HLE, and were subjected to different functional assays. Knockdown of ILK significantly suppressed HCC cell growth, motility and invasion in vitro and inhibited tumorigenicity in vivo. Western blot analysis revealed a reduced phosphorylated-Akt (pAkt) at Serine-473 expression in ILK knockdown stable clones when compared to control clones. Conclusion/Significance: This study provides evidence about the clinical relevance of ILK in hepatocarcinogenesis. ILK was found to be progressively elevated along HCC progression. Here our findings also provide the first validation about the oncogenic capacity of ILK in vivo by suppressing its expression in HCC cells. The oncogenic role of ILK is implicated to be mediated by Akt pathway. © 2011 Chan et al.published_or_final_versio

    Stable stem enabled Shannon entropies distinguish non-coding RNAs from random backgrounds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The computational identification of RNAs in genomic sequences requires the identification of signals of RNA sequences. Shannon base pairing entropy is an indicator for RNA secondary structure fold certainty in detection of structural, non-coding RNAs (ncRNAs). Under the Boltzmann ensemble of secondary structures, the probability of a base pair is estimated from its frequency across all the alternative equilibrium structures. However, such an entropy has yet to deliver the desired performance for distinguishing ncRNAs from random sequences. Developing novel methods to improve the entropy measure performance may result in more effective ncRNA gene finding based on structure detection.</p> <p>Results</p> <p>This paper shows that the measuring performance of base pairing entropy can be significantly improved with a constrained secondary structure ensemble in which only canonical base pairs are assumed to occur in energetically stable stems in a fold. This constraint actually reduces the space of the secondary structure and may lower the probabilities of base pairs unfavorable to the native fold. Indeed, base pairing entropies computed with this constrained model demonstrate substantially narrowed gaps of Z-scores between ncRNAs, as well as drastic increases in the Z-score for all 13 tested ncRNA sets, compared to shuffled sequences.</p> <p>Conclusions</p> <p>These results suggest the viability of developing effective structure-based ncRNA gene finding methods by investigating secondary structure ensembles of ncRNAs.</p

    The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs) regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'.</p> <p>Results</p> <p>We show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs), as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA), can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb) in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation.</p> <p>Conclusions</p> <p>We conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long, intergenic transcribed regions that could be involved in neoplastic transformation.</p
    corecore