25 research outputs found
Cold gas accretion in galaxies
Evidence for the accretion of cold gas in galaxies has been rapidly
accumulating in the past years. HI observations of galaxies and their
environment have brought to light new facts and phenomena which are evidence of
ongoing or recent accretion:
1) A large number of galaxies are accompanied by gas-rich dwarfs or are
surrounded by HI cloud complexes, tails and filaments. It may be regarded as
direct evidence of cold gas accretion in the local universe. It is probably the
same kind of phenomenon of material infall as the stellar streams observed in
the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI
have been found in nearby spiral galaxies. While a large fraction of this gas
is produced by galactic fountains, it is likely that a part of it is of
extragalactic origin. 3) Spirals are known to have extended and warped outer
layers of HI. It is not clear how these have formed, and how and for how long
the warps can be sustained. Gas infall has been proposed as the origin. 4) The
majority of galactic disks are lopsided in their morphology as well as in their
kinematics. Also here recent accretion has been advocated as a possible cause.
In our view, accretion takes place both through the arrival and merging of
gas-rich satellites and through gas infall from the intergalactic medium (IGM).
The infall may have observable effects on the disk such as bursts of star
formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold
gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates
needed to sustain the observed star formation (~1 Msol/yr), additional infall
of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages.
Full-resolution version available at
http://www.astron.nl/~oosterlo/accretionRevie
The remnants of galaxy formation from a panoramic survey of the region around M31
In hierarchical cosmological models, galaxies grow in mass through the
continual accretion of smaller ones. The tidal disruption of these systems is
expected to result in loosely bound stars surrounding the galaxy, at distances
that reach times the radius of the central disk. The number,
luminosity and morphology of the relics of this process provide significant
clues to galaxy formation history, but obtaining a comprehensive survey of
these components is difficult because of their intrinsic faintness and vast
extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We
detect stars and coherent structures that are almost certainly remnants of
dwarf galaxies destroyed by the tidal field of M31. An improved census of their
surviving counterparts implies that three-quarters of M31's satellites brighter
than await discovery. The brightest companion, Triangulum (M33), is
surrounded by a stellar structure that provides persuasive evidence for a
recent encounter with M31. This panorama of galaxy structure directly confirms
the basic tenets of the hierarchical galaxy formation model and reveals the
shared history of M31 and M33 in the unceasing build-up of galaxies.Comment: Published in Nature. Supplementary movie available at
https://www.astrosci.ca/users/alan/PANDAS/Latest%20news%3A%20movie%20of%20orbit.htm
Radio & Optical Interferometry: Basic Observing Techniques and Data Analysis
Astronomers usually need the highest angular resolution possible, but the
blurring effect of diffraction imposes a fundamental limit on the image quality
from any single telescope. Interferometry allows light collected at
widely-separated telescopes to be combined in order to synthesize an aperture
much larger than an individual telescope thereby improving angular resolution
by orders of magnitude. Radio and millimeter wave astronomers depend on
interferometry to achieve image quality on par with conventional visible and
infrared telescopes. Interferometers at visible and infrared wavelengths extend
angular resolution below the milli-arcsecond level to open up unique research
areas in imaging stellar surfaces and circumstellar environments.
In this chapter the basic principles of interferometry are reviewed with an
emphasis on the common features for radio and optical observing. While many
techniques are common to interferometers of all wavelengths, crucial
differences are identified that will help new practitioners avoid unnecessary
confusion and common pitfalls. Concepts essential for writing observing
proposals and for planning observations are described, depending on the science
wavelength, angular resolution, and field of view required. Atmospheric and
ionospheric turbulence degrades the longest-baseline observations by
significantly reducing the stability of interference fringes. Such
instabilities represent a persistent challenge, and the basic techniques of
phase-referencing and phase closure have been developed to deal with them.
Synthesis imaging with large observing datasets has become a routine and
straightforward process at radio observatories, but remains challenging for
optical facilities. In this context the commonly-used image reconstruction
algorithms CLEAN and MEM are presented. Lastly, a concise overview of current
facilities is included as an appendix.Comment: 45 pages, 14 Figures; an abridged version of a chapter to appear in
Volume 2 of Planets, Stars and Stellar Systems, to be published in 2011 by
Springe
