216 research outputs found

    Full-scale collapse testing of a steel stiffened plate structure under axial-compressive loading at a temperature of −80°C

    Get PDF
    The aim of the paper was to develop a test database of the ultimate strength characteristics of full-scale steel stiffened plate structures under axial compressive loading at a temperature of −80°C. This paper is a sequel to the authors’ articles (Paik et al. 2020a, https://doi.org/10.1016/j.istruc.2020.05.026 and Paik et al. 2020b, https://doi.org/10.1080/17445302.2020.1787930). In contrast to the earlier articles associated with room temperature or cryogenic condition, this paper investigated the effect of a low temperature at −80°C which is within the boundary range of temperature of the ductile-to-brittle fracture transition for carbon steels. A material model representing the test conditions was also proposed to capture the characteristics of carbon steels at low temperatures both in tension and in compression, and it was used in finite element method simulations of the full-scale experiment. A comparison between numerical analyses and experiments showed that the proposed model could successfully predict the failure modes and ultimate strength characteristics at low temperatures for stiffened plate structures under axial compressive loading conditions

    Ultimate limit state-based multi-objective optimum design technology for hull structural scantlings of merchant cargo ships

    Get PDF
    As the ultimate limit state is now a primary criterion for ship structural design, multi-objective optimization techniques for both minimizing weight and maximizing safety are routine practices in the structural design of naval ships as such techniques are critical for determining the structural weight needed to meet the functional requirements associated with naval armaments. However, a comparative approach is still used in the structural design of merchant cargo ships, based on measurements from existing as-built reference ships. This comparative approach obviously needs to be upgraded, because it requires more man-hours and causes more design errors than a fully automated design procedure. The comparative approach may also lead to inadequate design results, in which some structural members are too strong, and others barely satisfy the strength criteria, which can lead to catastrophic failures in some cases. The aim of this paper is to develop a fully automated methodology for the optimum design of hull structural scantlings for merchant cargo ships that are modelled by plate-shell finite elements. A full optimization technique with multi-objectives is applied for minimizing structural weight and maximizing structural safety, as per design constraints associated with the ultimate limit states of the plate panels, support members and hull girders. The developed procedure is applied to the hull structural scantlings of a very large crude oil carrier (VLCC), and this test demonstrates the procedure's capacity to meet the strength requirements of common structural rules. A comparison between the new design and an as-built reference ship is made, confirming that the proposed procedure reduces the number of man-hours required by about 20%, lightens the structural weight by 3% and improves the safety factors for the critical members

    A practical diagram to determine the residual longitudinal strength of grounded ship in Northern Sea Route

    Get PDF
    In this study, a useful solution is proposed for assessing the safety of the ship’s hull damaged by grounding in Northern Sea Route (NSR) or Arctic sea. In particular, the residual ultimate longitudinal strength of grounding damaged ship can be predicted by the grounding damage index (GDI) concept. Due to the global warming effects, the Arctic glaciers have been gradually melting, and it may bring us the new North Pole routes. However, there are uncertainties on many causes that can lead to grounding accident of the commercial vessels. In this regard, residual ultimate longitudinal strength of grounding damaged commercial ship in Arctic sea is investigated. Five (5) temperatures: room temperature (RT), −20°C, −40°C, −60°C and −80°C were adopted to consider the cold temperature effect in NSR. The Panamax class oil tanker was selected for the investigation of residual ultimate longitudinal strength of grounding damaged ship. Fifty (50) reliable damage scenarios were adopted for the evaluation of structural health by utilising Residual strength versus GDI (R-D) diagram method. From this study, a modified R-D diagram is proposed which can consider grounding damage with cold temperature effect. The obtained outcome will be useful for assessing the safety of the grounded ships in Arctic sea region by measuring the grounding damage amount and surrounding air temperature

    Full-scale collapse testing of a steel stiffened plate structure under axial-compressive loading triggered by brittle fracture at cryogenic condition

    Get PDF
    This paper is a sequel to the authors’ earlier article Paik et al. [2020a. Full-scale collapse testing of a steel stiffened plate structure under cyclic axial-compressive loading, Structures, https://doi.org/10.1016/j.istruc.2020.05.026]. The aim of the paper was to present a test data on the ultimate compressive strength characteristics of a full-scale steel stiffened plate structure at cryogenic condition which may be due to unwanted release of liquefied gases. The test structure was fabricated in a shipyard using exactly the same welding technology as used in today’s shipbuilding industry. It is observed that the test structure reaches the ultimate limit states triggered by brittle fracture, which is totally different from typical collapse modes at room temperature. Details of the test database are documented as they can be used to validate computational models for the structural crashworthiness analysis involving brittle fracture at cryogenic condition

    Methods for determining the optimal arrangement of water deluge systems on offshore installations

    Get PDF
    Offshore installations are prone to fire and/or explosion accidents. Fires have particularly serious consequences due to their high temperatures and heat flux, which affect humans, structures and environments alike. Due to the hydrocarbon explosions caused by delayed ignition following gas dispersion, fires can be the result of immediate ignition after gas release. Accordingly, it can be difficult to decrease their frequency, which is an element of risk (risk=frequency×consequence), using an active protection system (APS) such as gas detectors capable of shutting down the operation. Thus, it is more efficient to reduce the consequence using a passive protection system (PSS) such as water spray. It is important to decide the number and location of water deluge systems, thus the aim of this study is to introduce a new procedure for optimising the locations of water deluge systems using the water deluge location index (WLI) proposed herein. The locations of water deluge systems are thus optimised based on the results of credible fire scenarios using a three-dimensional computational fluid dynamics (CFD) tool. The effects of water spray and the effectiveness of the WLI are investigated in comparison with uniformly distributed sprays

    Stabilizing entanglement autonomously between two superconducting qubits

    Full text link
    Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have recently been used for qubit reset and the stabilization of a single qubit state, as well as for creating and stabilizing states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach counter-intuitively uses engineered dissipation to fight decoherence, obviating the need for a complicated external feedback loop to correct errors, simplifying implementation. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block state for quantum information processing. Such autonomous schemes, broadly applicable to a variety of physical systems as demonstrated by a concurrent publication with trapped ion qubits, will be an essential tool for the implementation of quantum-error correction.Comment: 39 pages, 7 figure

    Immunohistochemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in breast carcinoma in Jordan

    Get PDF
    INTRODUCTION: Although breast carcinoma (BC) is the most common malignancy affecting Jordanian females and the affected population in Jordan is younger than that in the West, no information is available on its biological characteristics. Our aims in this study are to evaluate the expression of estrogen receptor (ER) and progesterone receptor (PR) and Her-2/neu overexpression in BC in Jordan, and to compare the expression of these with other prognostic parameters for BC such as histological type, histological grade, tumor size, patients' age, and number of lymph node metastases. METHOD: This is a retrospective study conducted in the Department of Pathology at Jordan University of Science and Technology. A confirmed 91 cases of BC diagnosed in the period 1995 to 1998 were reviewed and graded. We used immunohistochemistry to evaluate the expression of ER, PR, and Her-2. Immunohistochemical findings were correlated with age, tumor size, grade and axillary lymph node status. RESULTS: Her-2 was overexpressed in 24% of the cases. The mean age of Her-2 positive cases was 42 years as opposed to 53 years among Her-2 negative cases (p = 0.0001). Her-2 expression was inversely related to ER and PR expression. Her-2 positive tumors tended to be larger than Her-2 negative tumors with 35% overexpression among T3 tumors as opposed to 22% among T2 tumors (p = 0.13). Her-2 positive cases tended to have higher rates of axillary metastases, but this did not reach statistical significance. ER and PR positive cases were seen in older patients with smaller tumor sizes. CONCLUSION: Her-2 overexpression was seen in 24% of BC affecting Jordanian females. Her-2 overexpression was associated with young age at presentation, larger tumor size, and was inversely related to ER and PR expression. One-fifth of the carcinomas were Her-2 positive and ER negative. This group appears to represent an aggressive form of BC presenting at a young age with large primary tumors and a high rate of four or more axillary lymph node metastases

    Additive effect of LRP8/APOER2 R952Q variant to APOE Δ2/Δ3/Δ4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study

    Get PDF
    BACKGROUND: The R952Q variant in the low density lipoprotein receptor-related protein 8 (LRP8)/apolipoprotein E receptor 2 (ApoER2) gene has been recently associated with familial and premature myocardial infarction (MI) by means of genome-wide linkage scan/association studies. We were interested in the possible interaction of the R952Q variant with another established cardiovascular genetic risk factor belonging to the same pathway, namely apolipoprotein E (APOE) epsilon2/epsilon3/epsilon4 genotype, in modulating apolipoprotein E (ApoE) plasma levels and risk of MI. METHODS: In the Italian cohort used to confirm the association of the R952Q variant with MI, we assessed lipid profile, apolipoprotein concentrations, and APOE epsilon2/epsilon3/epsilon4 genotype. Complete data were available for a total of 681 subjects in a case-control setting (287 controls and 394 patients with MI). RESULTS: Plasma ApoE levels decreased progressively across R952Q genotypes (mean levels +/- SD = RR: 0.045 +/- 0.020, RQ: 0.044 +/- 0.014, QQ: 0.040 +/- 0.008 g/l; P for trend = 0.047). Combination with APOE genotypes revealed an additive effect on ApoE levels, with the highest level observed in RR/non-carriers of the E4 allele (0.046 +/- 0.021 g/l), and the lowest level in QQ/E4 carriers (0.035 +/- 0.009 g/l; P for trend = 0.010). QQ/E4 was also the combined genotype with the most significant association with MI (OR 3.88 with 95\%CI 1.08-13.9 as compared with RR/non-carriers E4). CONCLUSION: Our data suggest that LRP8 R952Q variant may have an additive effect to APOE epsilon2/epsilon3/epsilon4 genotype in determining ApoE concentrations and risk of MI in an Italian population
    • 

    corecore