4,032 research outputs found
A massive reservoir of low-excitation molecular gas at high redshift
Molecular hydrogen is an important component of galaxies because it fuels
star formation and accretion onto AGN, the two processes that generate the
large infrared luminosities of gas-rich galaxies. Observations of spectral-line
emission from the tracer molecule CO are used to probe the properties of this
gas. But the lines that have been studied in the local Universe, mostly the
lower rotational transitions of J = 1-0 and J = 2-1, have hitherto been
unobservable in high-redshift galaxies. Instead, higher transitions have been
used, although the densities and temperatures required to excite these higher
transitions may not be reached by much of the gas. As a result, past
observations may have underestimated the total amount of molecular gas by a
substantial amount. Here we report the discovery of large amounts of
low-excitation molecular gas around the infrared-luminous quasar, APM
08279+5255 at z = 3.91, using the two lowest excitation lines of 12CO (J = 1-0
and J = 2-1). The maps confirm the presence of hot and dense gas near the
nucleus, and reveal an extended reservoir of molecular gas with low excitation
that is 10 to 100 times more massive than the gas traced by higher-excitation
observations. This raises the possibility that significant amounts of
low-excitation molecular gas may lurk in the environments of high-redshift (z >
3) galaxies.Comment: To appear as a Letter to Nature, 4th January 200
Choreography, controversy and child sex abuse: Theoretical reflections on a cultural criminological analysis of dance in a pop music video
This article was inspired by the controversy over claims of ‘pedophilia!!!!’ undertones and the ‘triggering’ of memories of childhood sexual abuse in some viewers by the dance performance featured in the music video for Sia’s ‘Elastic Heart’ (2015). The case is presented for acknowledging the hidden and/or overlooked presence of dance in social scientific theory and cultural studies and how these can enhance and advance cultural criminological research. Examples of how these insights have been used within other disciplinary frameworks to analyse and address child sex crime and sexual trauma are provided, and the argument is made that popular cultural texts such as dance in pop music videos should be regarded as significant in analysing and tracing public perceptions and epistemologies of crimes such as child sex abuse
Recommended from our members
The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola
Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1), which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR) leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1), revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS) of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC) was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state
Pedigree analysis of Czech Holstein calves with schistosoma reflexum
<p>Abstract</p> <p>Background</p> <p>Schistosoma reflexum (SR) is congenital syndrome briefly characterized by visceral eventration, severe dorsoflexion and ankylosis of the spine and arthrogryposis. A genetic etiology has been proposed, but conclusive evidence has not yet been provided.</p> <p>Methods</p> <p>Pedigree analysis was carried out in 29 cases of SR in Czech Holsteins and Holstein crosses. Genetic relationship was evaluated and inbreeding coefficients calculated. Pedigrees of 15 Czech Holsteins fathering non-SR affected calves were used for comparison.</p> <p>Results</p> <p>Twenty-one cases occurred in one pedigree founded by three sires while three SR calves occurred in another pedigree with a common grandfather. The sex ratio between affected males and females was 11:6. Affected calves shared common ancestors different from those shared by the unaffected calves. The inbreeding coefficient in the SR affected calves was not increased compared to unaffected calves.</p> <p>Conclusions</p> <p>The findings are consistent with SR being inherited autosomal recessively. Further studies are however needed to confirm this and therefore a breeding trial is recommended where a suspected heterozygous sire is mated to closely related females.</p
Effective theories of single field inflation when heavy fields matter
We compute the low energy effective field theory (EFT) expansion for
single-field inflationary models that descend from a parent theory containing
multiple other scalar fields. By assuming that all other degrees of freedom in
the parent theory are sufficiently massive relative to the inflaton, it is
possible to derive an EFT valid to arbitrary order in perturbations, provided
certain generalized adiabaticity conditions are respected. These conditions
permit a consistent low energy EFT description even when the inflaton deviates
off its adiabatic minimum along its slowly rolling trajectory. By generalizing
the formalism that identifies the adiabatic mode with the Goldstone boson of
this spontaneously broken time translational symmetry prior to the integration
of the heavy fields, we show that this invariance of the parent theory dictates
the entire non-perturbative structure of the descendent EFT. The couplings of
this theory can be written entirely in terms of the reduced speed of sound of
adiabatic perturbations. The resulting operator expansion is distinguishable
from that of other scenarios, such as standard single inflation or DBI
inflation. In particular, we re-derive how certain operators can become
transiently strongly coupled along the inflaton trajectory, consistent with
slow-roll and the validity of the EFT expansion, imprinting features in the
primordial power spectrum, and we deduce the relevant cubic operators that
imply distinct signatures in the primordial bispectrum which may soon be
constrained by observations.Comment: (v1) 25 pages, 1 figure; (v2) references added and typos corrected,
to appear in Journal of High Energy Physic
The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis
<p><b>Background:</b> <i>Trypanosoma brucei gambiense</i> is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a <i>T. b. brucei</i> isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between <i>T. b. gambiense</i> and the reference genome. We sought to identify features that were uniquely associated with <i>T. b. gambiense</i> and its ability to infect humans.</p>
<p><b>Methods and findings:</b> An improved high-quality draft genome sequence for the group 1 <i>T. b. gambiense</i> DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with <i>T. b. brucei</i> showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in <i>T. b. gambiense</i> DAL 972. A comparison of the variant surface glycoproteins (VSG) in <i>T. b. brucei</i> with all <i>T. b. gambiense</i> sequence reads showed that the essential structural repertoire of VSG domains is conserved across <i>T. brucei</i>.</p>
<p><b>Conclusions:</b> This study provides the first estimate of intraspecific genomic variation within <i>T. brucei</i>, and so has important consequences for future population genomics studies. We have shown that the <i>T. b. gambiense</i> genome corresponds closely with the reference, which should therefore be an effective scaffold for any <i>T. brucei</i> genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in <i>T. b. brucei</i>, no <i>T. b. gambiense</i>-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.</p>
Parasite Lost: Chemical and Visual Cues Used by Pseudacteon in Search of Azteca instabilis
An undescribed species of phorid fly (genus: Pseudacteon) parasitizes the ant Azteca instabilis F Smith, by first locating these ants through the use of both chemical and visual cues. Experiments were performed in Chiapas, Mexico to examine a) the anatomical source of phorid attractants, b) the specific chemicals produced that attract phorids, and c) the nature of the visual cues used by phorids to locate the ants. We determined that phorid-attracting chemicals were present within the dorsal section of the abdomen, the location of the pygidial gland. Further experiments indicate that a pygidial gland compound, 1-acetyl-2-methylcyclopentane, is at least partially responsible for attracting phorid flies to their host. Finally, although visual cues such as movement were important for host location, size and color of objects did not influence the frequency with which phorids attacked moving targets
High Density Microarray Analysis Reveals New Insights into Genetic Footprints of Listeria monocytogenes Strains Involved in Listeriosis Outbreaks
Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism
- …