28 research outputs found

    The Environmental Dependence of Inbreeding Depression in a Wild Bird Population

    Get PDF
    BACKGROUND: Inbreeding depression occurs when the offspring produced as a result of matings between relatives show reduced fitness, and is generally understood as a consequence of the elevated expression of deleterious recessive alleles. How inbreeding depression varies across environments is of importance for the evolution of inbreeding avoidance behaviour, and for understanding extinction risks in small populations. However, inbreeding-by-environment (IxE) interactions have rarely been investigated in wild populations. METHODOLOGY/PRINCIPAL FINDINGS: We analysed 41 years of breeding events from a wild great tit (Parus major) population and used 11 measures of the environment to categorise environments as relatively good or poor, testing whether these measures influenced inbreeding depression. Although inbreeding always, and environmental quality often, significantly affected reproductive success, there was little evidence for statistically significant I x E interactions at the level of individual analyses. However, point estimates of the effect of the environment on inbreeding depression were sometimes considerable, and we show that variation in the magnitude of the I x E interaction across environments is consistent with the expectation that this interaction is more marked across environmental axes with a closer link to overall fitness, with the environmental dependence of inbreeding depression being elevated under such conditions. Hence, our analyses provide evidence for an environmental dependence of the inbreeding x environment interaction: effectively an I x E x E. CONCLUSIONS/SIGNIFICANCE: Overall, our analyses suggest that I x E interactions may be substantial in wild populations, when measured across relevant environmental contrasts, although their detection for single traits may require very large samples, or high rates of inbreeding

    Identification of novel vascular targets in lung cancer

    Get PDF
    Background: Lung cancer remains the leading cause of cancer-related death, largely owing to the lack of effective treatments. A tumour vascular targeting strategy presents an attractive alternative; however, the molecular signature of the vasculature in lung cancer is poorly explored. This work aimed to identify novel tumour vascular targets in lung cancer. Methods: Enzymatic digestion of fresh tissue followed by endothelial capture with Ulex lectin-coated magnetic beads was used to isolate the endothelium from fresh tumour specimens of lung cancer patients. Endothelial isolates from the healthy and tumour lung tissue were subjected to whole human genome expression profiling using microarray technology. Results: Bioinformatics analysis identified tumour endothelial expression of angiogenic factors, matrix metalloproteases and cellsurface transmembrane proteins. Predicted novel tumour vascular targets were verified by RNA-seq, quantitative real-time PCR analysis and immunohistochemistry. Further detailed expression profiling of STEAP1 on 82 lung cancer patients confirmed STEAP1 as a novel target in the tumour vasculature. Functional analysis of STEAP1 using siRNA silencing implicates a role in endothelial cell migration and tube formation. Conclusions: The identification of cell-surface tumour endothelial markers in lung is of interest in therapeutic antibody and vaccine development

    Adenovirus vector-mediated delivery of the prodrug-converting enzyme carboxypeptidase G2 in a secreted or GPI-anchored form: High-level expression of this active conditional cytotoxic enzyme at the plasma membrane.

    No full text
    Carboxypeptidase G2 (CPG2) is a powerful prodrug-converting enzyme. Without a requirement for endogenous enzymes or cofactors, it can directly activate mustard alkylating prodrugs to cytotoxic species, killing both quiescent and dividing cells. This paper provides the first report of its use in the context of a clinically relevant delivery vehicle using adenovirus vectors. To strengthen the efficacy of the prodrug-activating system, the enzyme has been engineered to be secreted or glycosylphosphatidylinositol (GPI) anchored to the extracellular membrane of tumor cells, resulting in an enhanced bystander effect by facilitating diffusion of the active drug through extracellular, rather than intracellular, activation. Using the vectors, we have achieved expression of functional secreted or GPI-anchored CPG2 in a panel of tumor cell lines demonstrating no loss in efficacy as a result of GPI anchor retention. Despite variable transduction efficiencies inherent to these vectors, greater than 50% cell kill was achievable in all of the cell lines tested following only a single exposure to the prodrug ZD2767P. Even in cell lines refractive to infection with the vectors, substantial cell death was recorded, indicative of the enhanced bystander effect generated following extracellular prodrug activation. A direct evaluation of the efficacy of our system has been made against adenoviral delivery of herpes simples virus thymidine kinase plus ganciclovir (GCV), a suicide gene therapy approach already in the clinic. In a short-term human glioma culture (IN1760) resistant to the clinical chemotherapeutic drug CCNU (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea), thymidine kinase/GCV effected no cell killing compared to 70% cell killing with our system
    corecore