58 research outputs found

    Levonorgestrel-releasing intrauterine system vs. usual medical treatment for menorrhagia: An economic evaluation alongside a randomised controlled trial

    Get PDF
    Objective: To undertake an economic evaluation alongside the largest randomised controlled trial comparing Levonorgestrel-releasing intrauterine device ('LNG-IUS') and usual medical treatment for women with menorrhagia in primary care; and compare the cost-effectiveness findings using two alternative measures of quality of life. Methods: 571 women with menorrhagia from 63 UK centres were randomised between February 2005 and July 2009. Women were randomised to having a LNG-IUS fitted, or usual medical treatment, after discussing with their general practitioner their contraceptive needs or desire to avoid hormonal treatment. The treatment was specified prior to randomisation. For the economic evaluation we developed a state transition (Markov) model with a 24 month follow-up. The model structure was informed by the trial women's pathway and clinical experts. The economic evaluation adopted a UK National Health Service perspective and was based on an outcome of incremental cost per Quality Adjusted Life Year (QALY) estimated using both EQ-5D and SF-6D. Results: Using EQ-5D, LNG-IUS was the most cost-effective treatment for menorrhagia. LNG-IUS costs £100 more than usual medical treatment but generated 0.07 more QALYs. The incremental cost-effectiveness ratio for LNG-IUS compared to usual medical treatment was £1600 per additional QALY. Using SF-6D, usual medical treatment was the most cost-effective treatment. Usual medical treatment was both less costly (£100) and generated 0.002 more QALYs. Conclusion: Impact on quality of life is the primary indicator of treatment success in menorrhagia. However, the most costeffective treatment differs depending on the quality of life measure used to estimate the QALY. Under UK guidelines LNG-IUS would be the recommended treatment for menorrhagia. This study demonstrates that the appropriate valuation of outcomes in menorrhagia is crucial. Copyright: © 2014 Sanghera et al

    The Use of Health State Utility Values In Decision Models

    Get PDF
    Methodological issues of how to use health state utility values (HSUVs) in decision models arise frequently, including the most appropriate evidence to use as the baseline (e.g. the baseline HSUVs associated with avoiding a particular health condition or event), how to capture changes due to adverse events and how to appropriately capture uncertainty in progressive conditions where the expected change in quality of life is likely to be monotonically decreasing over time. As preference-based measures provide different values when collected from the same patient, it is important to ensure that all HSUVs used within a single model are obtained from the same instrument where ever possible. When people enter the model without the condition of interest (e.g. primary prevention of cardiovascular disease, screening or vaccination programmes), appropriate age- and gender-adjusted HSUVs from people without the particular condition should be used as the baseline. General population norms may be used as a proxy if the exact condition-specific evidence is not available. Individual discrete health states should be used for serious adverse reactions to treatment and the corresponding HSUVs sourced as normal. Care should be taken to avoid double counting when capturing the effects for both less severe adverse reactions (e.g. itchy skin rash or dry cough) and more severe adverse events (e.g. fatigue in oncology). Transparency in reporting standards for both the justification of the evidence used and any ‘adjustments’ is important to increase readers’ confidence that the evidence used is the most appropriate available

    GU81, a VEGFR2 antagonist peptoid, enhances the anti-tumor activity of doxorubicin in the murine MMTV-PyMT transgenic model of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial growth factor (VEGF) is a primary stimulant of angiogenesis under physiological and pathological conditions. Anti-VEGF therapy is a clinically proven strategy for the treatment of a variety of cancers including colon, breast, lung, and renal cell carcinoma. Since VEGFR2 is the dominant angiogenic signaling receptor, it has become an important target in the development of novel anti-angiogenic therapies. We have reported previously the development of an antagonistic VEGFR2 peptoid (GU40C4) that has promising anti-angiogenic activity <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>In the current study, we utilize a derivative of GU40C4, termed GU81 in therapy studies. GU81 was tested alone or in combination with doxorubicin for <it>in vivo </it>efficacy in the MMTV-PyMT transgenic model of breast cancer.</p> <p>Results</p> <p>The derivative GU81 has increased <it>in vitro </it>efficacy compared to GU40C4. Single agent therapy (doxorubicin or GU81 alone) had no effect on tumor weight, histology, tumor fat content, or tumor growth index. However, GU81 is able to significantly to reduce total vascular area as a single agent. GU81 used in combination with doxorubicin significantly reduced tumor weight and growth index compared to all other treatment groups. Furthermore, treatment with combination therapy significantly arrested tumor progression at the premalignant stage, resulting in increased tumor fat content. Interestingly, treatment with GU81 alone increased tumor-VEGF levels and macrophage infiltration, an effect that was abrogated when used in combination with doxorubicin.</p> <p>Conclusion</p> <p>This study demonstrates the VEGFR2 antagonist peptoid, GU81, enhances the anti-tumor activity of doxorubicin in spontaneous murine MMTV-PyMT breast tumors.</p

    Cytokine Levels Correlate with Immune Cell Infiltration after Anti-VEGF Therapy in Preclinical Mouse Models of Breast Cancer

    Get PDF
    The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1β, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages) while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1β and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients
    corecore