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Abstract

Purpose Little is known about estimating utilities for

comorbid (or ‘joint’) health states. Several joint health state

prediction models have been suggested (for example,

additive, multiplicative, best-of-pair, worst-of-pair, etc.),

but no general consensus has been reached. The purpose of

the study is to explore the relationship between health-

related quality of life (HRQoL) and increasing numbers of

diagnoses.

Methods We analyzed a large dataset containing

respondents’ ICD-9 diagnoses and preference-based

HRQoL (EQ-5D and SF-6D). Data were stratified by the

number of diagnoses, and mean HRQoL values were esti-

mated. Several adjustments, accounting for the respon-

dents’ age, sex, and the severity of the diagnoses, were

carried out. Our analysis fitted additive and multiplicative

models to the data and assessed model fit using multiple

standard model selection methods.

Results A total of 39,817 respondents were included in

the analyses. Average HRQoL values were represented

well by both linear and multiplicative models. Although

results across all analyses were similar, adjusting for

severity of diagnoses, age, and sex strengthened the linear

model’s performance measures relative to the multiplica-

tive model. Adjusted R2 values were above 0.99 for all

analyses (i.e., all adjusted analyses, for both HRQoL

instruments), indicating a robust result.

Conclusions Additive and multiplicative models perform

equally well within our analyses. A practical implication of

our findings, based on the presumption that a linear model

is simpler than an additive model, is that an additive model

should be preferred unless there is compelling evidence to

the contrary.

Keywords EQ-5D � SF-6D � Comorbidity � Health-state

utility value � Health-related quality of life

Introduction

Economic evaluation of healthcare interventions is typi-

cally carried out using quality-adjusted life years (QALYs)

as the outcome measure. The QALY combines length of

life and health-related quality of life (HRQoL) in a single

metric. As an addition to direct empirical comparison of

QALY gain of available treatment options, modeling of

cost utility is becoming increasingly common, since mod-

eling based on existing data is more flexible and affordable

than tailoring clinical tests to every scenario of potential

interest. Such modeling rests on extensive use of preex-

isting recorded values representing the mean HRQoL loss

associated with particular health conditions—so-called

health-state utility values (HSUVs). This has created a

demand for values for common ailments, which in turn has

spurred on an effort to estimate catalogs of HSUVs asso-

ciated with specific diagnoses [1, 2]. Priority setting in

health care is becoming an increasingly important field for

policy makers as the medical frontier is advancing ahead of
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budget constraints [3]. Access to sound estimates of health

state utilities is important in order to ensure that resources

are allocated in an efficient manner when evaluating

treatments and interventions.

Modeling is complicated by the fact that patients fre-

quently have more than one health problem, that is, are

comorbid. Comorbidity is an ubiquitous and high-impact

phenomenon [4], to the extent that three in four Americans

above 65 years of age are diagnosed with two or more

chronic diseases. In order to accurately estimate the QALY

gain of alternative interventions in target populations, ana-

lysts need information about the HSUVs of health states

characterized by being a combination of medical conditions.

Several efforts to construct catalogs of off-the-shelf

HSUVs representing the mean HRQoL of various sub-

populations have been undertaken [1, 2, 5]. These studies

have in common that they are based on multivariate linear

regression modeling on large datasets and thus can be said

to incorporate quite accurate information while taking into

account a number of factors which influence HRQoL. This

is a suitable way for cost-utility modeling within a specific

population where information (socio-demographics, diag-

noses, etc.) is abundant. However, this method is not aimed

at gaining knowledge about how comorbidities per se may

interact with HRQoL. In particular, this paradigm assumes

additive effects of having several diagnoses and therefore

may be inadequate to inform on the relationship between

comorbidity and HRQoL. A study by Sullivan et al. [6]

looks at the impact of the number of chronic conditions on

HRQoL, in a similar setting, concluding that the number of

chronic conditions of an individual is a very important

predictor of HRQoL.

A rather different approach to dealing with comorbidity

is represented by attempts at identifying good mathematical

models of comorbidity [4]. A mathematical model of

comorbidity assumes that the HSUV of a compound health

state can be estimated from the HSUVs of the component

health states. Different models have been studied and

compared, without any clear best fit [7, 8]. Research has

mainly focused on combining single-state health state val-

ues into joint-state health state values [9–13], because large

enough populations with any given combination of three

distinct diagnoses are too small. Several joint health state

predictors have been suggested (i.e., additive, multiplica-

tive, best-of-pair, worst-of-pair, etc.), but no general con-

sensus has been reached [7]. The various models (additive,

multiplicative, minimum, etc.) lead to diverging predic-

tions. An additive model implies that preferences should

decline linearly with increased diagnoses; the multiplicative

model implies diminishing marginal loss of HRQoL as a

function of additional diagnoses. The best and worst-of pair

models both imply a rapidly flattening HRQoL as diagnoses

add up.

Investigating the mathematical relationship between

single-state HSUVs and their corresponding joint-state

HSUV is likely to be insufficient to uncover a general

trend. Without any preconceptions about the preferred

functional form, the purpose of this study is to explore the

relationship between mean HRQoL and increasing num-

bers of diagnoses.

Methods

Data

We obtained data from the 2001 and 2003 Medical Expen-

diture Panel Survey (MEPS) [14]. These MEPS datasets

contain detailed information on non-institutionalized US

respondents’ health and socio-demographics, as well as self-

reported HRQoL measured by two multi-attribute utility

instruments, the EQ-5D and SF-6D (further details are

provided below; the choice of years was based on the

availability of contemporaneous EQ-5D and SF-6D data).

The MEPS Web site also provides, in an auxiliary medical

conditions file, a list of International Classification of Dis-

eases, Ninth Revision, Clinical Modification (ICD9-CM)

diagnose codes, which are linked to individuals by an

identification variable. For privacy reasons, ICD9-CM

diagnoses are provided as a truncated, 3-digit code in the

MEPS file. For example, this means that an individual

diagnosed with ‘hypertrophy of nasal turbinates’ (ICD9-CM

code 478.0) and ‘polyp of vocal cord or larynx’ (ICD9-CM

code 478.4) will be coded with two occurrences of the

3-digit ICD9-CM code 478.

HRQoL instruments

The EQ-5D is one of the most frequently used instruments to

assess HRQoL in health economic evaluation [15], requiring

individuals to describe their health state across five dimen-

sions: mobility, self-care, usual activities, pain and dis-

comfort, and anxiety and depression. The 2001 and 2003

MEPS included the three-level version of the EQ-5D, in

which each of the five dimensions has response options ‘no

problems,’ ‘some problems’ or ‘extreme problems’. EQ-5D

utility values were estimated using the preference-based

algorithm published by Shaw et al. [16]. SF-6D scores were

derived from the 12-Item Short-Form Health Survey (SF-12)

[17]. The SF-6D is a multi-attribute utility instrument

comprising items for the following six dimensions: physical

functioning, role limitations (physical and emotional), bod-

ily pain, vitality, social functioning, and mental health.

Seven of the 12 items from the SF-12 are used to derive an

SF-6D index score, and the six dimensions have between

three and five levels of severity. SF-6D utility values were
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calculated according to the preference-based algorithm

published by Brazier and Roberts [18].

Inclusion criteria

We denote by Pk the collection of MEPS individuals who

satisfy the following conditions: (1) at least 18 years of

age, (2) have valid data for both HRQoL instruments, and

(3) who have exactly k registered diagnoses in the MEPS

medical condition file. Similarly, for an ICD9-diagnosis, D,

the symbol PD denotes the set of individuals who are at

least 18 years of age, have valid HRQoL data, and are

registered with diagnosis D.

Statistical analysis

The primary aim of the study was to investigate how

HRQoL is affected by additional medical diagnoses. To

find support for generalizability beyond one specific

HRQoL instrument, we analyzed both the EQ-5D and the

SF-6D data from the MEPS dataset.

For each respondent in the MEPS 2001–2003 data, we

computed an auxiliary variable named ‘Number of (regis-

tered ICD9) Diagnoses’ (NoD); a variable which simply

counts the number of distinct ICD9 diagnoses assigned to

the individual via the MEPS medical conditions file (Note:

V-codes from the MEPS medical conditions files were

omitted; this is further discussed in the Discussion section).

Due to the 3-digit truncation of ICD9-codes, some

responders were registered with more than one occurrence

of the same ICD9-code. Such instances were counted with

multiplicity, since they originate from different ICD9-

codes in the underlying dataset. Next, the data were strat-

ified according to the NoD variable into Pk subgroups. To

ensure robust estimates of mean HRQoL for the NoD-de-

fined strata, a pre-defined threshold of 1000 individuals, per

strata, was required for inclusion in further analyses. For

each strata satisfying this threshold, mean EQ-5D and SF-

6D estimates were calculated. To assess the functional

relationship between HRQoL and NoD, we next fitted three

models to the aggregated data:

Model A : HRQoL ¼ aþ b � NoD

Model B : HRQoL ¼ aþ b � NoD þ b2 � NoD2 and

Model C : HRQoL ¼ a � bNoD

Model A may support an additive—or linear—relationship.

Model B may support a linear, an approximate multi-

plicative or an accelerating HRQoL loss relationship

between NoD and HRQoL, depending on the signs, the

magnitudes and the associated p values of the coefficients b
and b2. Model C, which is equivalent to the model

ln HRQoLð Þ ¼ a0 þ b0 � NoD, reflects a multiplicative

relationship between HRQoL and NoD. In all three models,

the intercept (a) is interpretable as the estimated mean

HRQoL of individuals with zero diagnoses. In Models A

and B, a fixed decrement b is subtracted for each additional

diagnosis; in Model B, an extra fixed adjustment of b2 �
NoD is added to the estimate. For Model C, instead of a

fixed decrement from a, the estimate is multiplied with a

factor of b for each additional diagnosis; whence a good fit

of this model may be taken as support of an underlying

multiplicative relationship.

Because early inspection of plots of the values suggested

the models would provide very similar fits, several model

selection statistics were computed to explore our research

question: regression coefficients, p values for the regres-

sion coefficients, the adjusted R2’s, the root-mean-squared

error (RMSE), and the leave-1-out root-mean-squared

residuals (L1O-RMSR) [19, 20], which is the analogous

index of the model’s predictive value [21]. The residuals

that enter the L1O-RMSR index are the distance between

the predicted value and the observed value for HRQoL for

Pk, when leaving out the estimate of Pk when estimating

the model (i.e., a standard leave-1-out cross-validation

approach). As Model A is a nested specification of Model

B, the two can be compared directly using standard anal-

ysis of variance methods, i.e., a nonsignificant regression

coefficient for the quadratic term indicates over-specifica-

tion. Because Models A and C are not nested models, there

is no canonical best way of comparing them. As a further

aid in interpreting the results, we also calculated the root-

mean-squared distance (RMSD) between the fitted values

of Model A and Model C. The RMSD is simply the

Euclidean distance between the two models’ fitted values

or equivalently the standard RMSE of Model A’s fitted

values regarding Model C’s fitted values as the observed

values. This last statistic is non-standard and therefore

should be interpreted with caution. On the other hand,

mathematically, the RMSD as defined here is simply the

Euclidean distance between the fitted values of the two

models, measured by the same metric as is used for the

RMSE statistic. Therefore, it has one obvious interpreta-

tion: the relative differences in magnitude of the RMSDs

between the two models, and the two models’ RMSEs, say

something about the mutual distance between the fitted

values relative to the fitted values to the observed ones. As

for the regressions, all means for the RMSE’s and the

RMSD’s were weighted by the strata’s relative sizes.

Adjusting for age, sex, and severity

Correlations between demographic factors, such as age or

gender, and HRQoL, or between the number of diagnoses

and diagnosis severity, may introduce bias unless accoun-

ted for in the analysis. An ideal dataset would ensure that
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Pk?1 is comprised of individuals from Pk after being

affected by one more diagnosis. Within our dataset, this

assumption does not hold because of inevitable differences

in age, sex, severity, and numerous other factors. Accord-

ingly, we performed a number of adjustments (age, sex,

and severity) to compensate for these potential sources of

bias. A detailed explanation of the adjustment methods is

reported in Appendix. Briefly, for the severity adjustment,

a new variable called ‘severity-weighted number of diag-

noses’ (SWNoD) was computed for each respondent by

summing severity weights rather than the (unadjusted)

number of diagnoses. Note that the severity weights were

calculated separately for EQ-5D and SF-6D, so that, for

example, when investigating the relationship between

SWNoD and EQ-5D, the severity weights used were

computed with respect to the EQ-5D. Furthermore, for

each of the HRQoL instruments, we computed severity

weights using two sets of criteria. ‘Relaxed’ weights were

calculated for all diagnoses for which we had at least one

observation of an individual with no other diagnoses. The

‘strict’ weights required at least 10 sole-diagnosis indi-

viduals for a weight to be estimated.

In total, four analyses were carried out for each of the

two HRQoL instruments (see Table 1 for an overview). All

analyses were carried out in the statistical software R [22];

the models were fitted with the built-in linear regression

modeling lm-function.

Results

The pooled 2001–2003 material contains a total of 67,771

individuals. A total of 47,178 individuals were 18 years or

older, out of which 39,817 (84.4 %) had valid data for both

MAUIs (which were administered to 18? year olds only).

The age variable ranged over 18–85 (mean 45.36); 45.5 %

were males. The NoD variable ranged over 0–45 (mean

3.28). A total of nine strata P0,…,P8 (consisting of patients

characterized by having exactly 0,…,8 diagnoses)

remained after omitting strata with fewer than a thousand

respondents. Table 2 gives descriptive statistics for the

strata P0–P8: unadjusted means for the strata’s mean

HRQoL as measured by EQ-5D and SF-6D, mean age,

percentage of males, strata size, and relative share (of the

39,817 with valid HRQoL information).

The age distribution was skewed toward more elderly

individuals in the strata representing more diagnoses, with

a near-linear relationship between the strata’s mean over

age and NoD. It is also the case that in general, the

respondents with more diagnoses also have more severe

diagnoses, as is evident by the perfect correlation

(r = 1.000) between NoD and mean SWNoD (Table 2);

indeed, the individuals with eight diagnoses have on

average almost nine severity-adjusted diagnoses.

Unadjusted analyses

For both HRQoL indices, the parsimonious linear models

exhibited R2[ 0.995, indicating that a linear relationship

between NoD and HRQoL explains the average values very

well. Summaries of the regression models are presented in

Table 3, together with results from the age-, sex-, and

severity-adjusted variables.

Adjusted analyses

The regression model of EQ-5D as a function of age and

sex within P0-stratum was significant for both independent

variables (p\ 0.000) and predicted age–sex reference

values.

uEQ a; sð Þ ¼ 0:9697 � 0:0007 � aþ 0:0085 � s

For SF-6D, only the sex variable was significant s

(p\ 0.000), and after leaving out the age variable

(p[ 0.05), the model predicted age–sex reference values

as

uSF a; sð Þ ¼ 0:8487 þ 0:0237 � s

Of the 555 distinct ICD-9 diagnoses in the MEPS

medical conditions file, there were 373 diagnoses for which

a severity weight was obtainable from at least one indi-

vidual (‘relaxed’ definition) and 124 diagnoses that at least

Table 1 List of analyses

carried out to compare linear

and multiplicative models

Analysis number HRQoL instrument Adjustment(s)

1 EQ-5D None

2 EQ-5D Age and sex

3 EQ-5D Age, sex, and severity (‘relaxed’ definition)

4 EQ-5D Age, sex, and severity (‘strict’ definition)

5 SF-6D None

6 SF-6D Age and sex

7 SF-6D Age, sex, and severity (‘relaxed’ definition)

8 SF-6D Age, sex, and severity (‘strict’ definition)
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10 individuals had as their sole diagnosis (‘strict’ defini-

tion). After omission of individuals with non-weighable

diagnoses, for the two different severity-adjustment crite-

ria, the procedure retained 36,599 (91.92 %) for the relaxed

inclusion and 25,858 (64.94 %) for the strict inclusion. The

adjustments were non-trivial: The fraction of respondents

who obtained a (rounded) SWNoD which differed from

their originally computed NoD category ranged from

9.23 % (Analysis 8: ‘strict’ SF-6D-based SWNoD) to

44.97 % (Analysis 3: ‘relaxed’ EQ-5D SWNoD).

The computed model selection statistics (see Table 3)

illustrate a good fit for all models, with very high adjusted

R2 values throughout. The RMSE column shows that all

three models give good fitted versus observed values.

Furthermore, the quadratic Model B, with its additional

parameter, tends to outperform the two other models with

respect to this metric. The L1O-RMSR gives a different

picture: Here the Model B under-performs, suggesting

over-specification. The Model C performs slightly better

than the Model A according to the L1O-RMSR metric;

however, this gap is closed after adjusting for age, sex, and

severity. In the L1O-RMSR metric, all models improve

their fit as adjustments are made, except for analyses 4 and

8 which correspond to the strict inclusion. The RMSD

column reports the distance between the predictions of the

Models A and C. This column shows that the difference

between the two models’ predictions is smaller than the

difference between the two models’ respective predictions

and the observed values.

For better visualization of the results presented in

Table 3, Fig. 1a, b provides a graphical image of two of the

models (Models 4A–C and 8A–C). We see that in both

cases, the three Models A–C provide similar fits and that

the immediate impression is that the parsimonious linear

model describes the trend well.

Discussion

The most striking property of the result reported in

Table 3 is the similarity between the three models.

Models A, B, and C display very similar fit indices, and

the RMSE values suggest that all three models estimate

the data well. Before adjustments for age, sex, and

severity, Models B and C slightly improve the fit com-

pared to the linear Model A. As expected, with its one

extra degree of freedom, the quadratic Model B tends to

beat the two other with a few thousands of a unit; how-

ever, looking to the L1O-RMSR column, it appears over-

specified. After adjustments are made, Model A outper-

forms or matches Model C.

Examining the RMSE and L1O-RMSR for Models A

and C does not identify either as being superior. If we

assume that the adjusted analyses are the most appropriate,

the improved fit of Model A suggests a possible underlying

true additive relationship. The results also suggest that

Models A and C are more similar to each other than to the

underlying data, as reflected by the RMSD values being

smaller than the two models’ RMSE statistics.

On average, little is gained from adding a quadratic term

to a linear model for predicting HRQoL loss associated

with extra diagnoses. This suggests that the general trend,

on average, is adequately captured by a linear model. That

this in conflict with many studies from the joint-state lit-

erature may be due to the fact that an additive model,

working directly with the HRQoL losses associated with a

Table 2 Descriptive statistics for each stratum defined by the number of diagnoses

NoD n (%) Cumulative n (%) Age Male (%) EQ-5D SF-6D NSWNoDa

0 7089 (17.8) 7089 (17.8) 36.9 (13.5) 56.9 0.948 (0.1) 0.862 (0.1) 0.000

1 7384 (18.6) 14,473 (36.4) 39.4 (14.6) 52.9 0.921 (0.1) 0.835 (0.1) 1.000

2 6194 (15.6) 20,667 (51.9) 42.4 (16.0) 50.2 0.893 (0.1) 0.811 (0.1) 2.029

3 4936 (12.4) 25,603 (64.3) 45.3 (16.9) 43.7 0.867 (0.2) 0.791 (0.1) 3.095

4 3624 (9.1) 29,227 (73.4) 48.9 (17.0) 39.6 0.838 (0.2) 0.769 (0.1) 4.182

5 2813 (7.1) 32,040 (80.5) 51.6 (17.4) 36.7 0.817 (0.2) 0.748 (0.1) 5.292

6 2093 (5.3) 34,133 (85.7) 53.4 (17.6) 35.0 0.785 (0.2) 0.723 (0.2) 6.435

7 1540 (3.9) 35,673 (89.6) 55.6 (17.3) 33.4 0.773 (0.2) 0.712 (0.1) 7.543

8 1212 (3.0) 36,885 (92.7) 58.2 (16.8) 31.5 0.742 (0.2) 0.686 (0.2) 8.713

Pearson’s correlation coefficients (r) 0.997 -0.979 -0.998 -0.998 1.000

Values are means (standard deviations) unless stated otherwise. The r-row reports Pearson’s correlation coefficients (r) between the number of

diagnoses (NoD) and the mean values in the corresponding column. As a consequence of the a priori decision to exclude stratum with fewer than

1000 individuals, data for 7.4 % of the dataset were omitted from further analysis

NoD number of diagnoses, NSWNoD normalized severity-weighted number of diagnoses
a The derivation of the normalized severity weights is described in ‘Appendix’
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single-state condition, does not account properly for the

HRQoL loss present also among those with no diagnoses.

Strengths and limitations

While several studies investigating the impact of having

two simultaneously existing diagnoses (the joint-state lit-

erature) have been carried out [9–13], the more general and

underlying question of how diagnoses impact HRQoL has

not been previously addressed. The study undertaken by

Sullivan et al. does to some extent overlap with this study

because they both incorporate respondents with multiple

diagnoses. However, whereas Sullivan’s model is designed

to predict individual HRQoL, given rich information about

the individuals’ age, sex, diagnoses, and other covariates,

our model is solely focusing on the independent impact of

diagnoses on HRQoL. Put simply, Sullivan focuses on the

HRQoL of individuals, with a rich model, while we use a

sparse model to focus on the functional relationship

between the number of diagnoses and HRQoL.

Previous studies [9, 11–13] have used the clinical clas-

sification categories (CCCs) as a crude measure of disease.

The CCCs also include V-codes; ‘supplementary Classifi-

cation of Factors Influencing Health Status and Contact

with Health Services (V01.0–V91.99) is provided to deal

with occasions when circumstances other than a disease or

injury (Codes 001–999) are recorded as a diagnosis or

problem’ [23]. As such, V-codes carry with it information

about other factors than morbidity qua morbidity. Using the

truncated CCC information—or defining NoD-stratum—

without omitting the V-codes thus may lead to groups with

possibly biased HSUV values. The working directly with

the ICD-9 diagnoses in this study permits omitting V-codes

and is a strength of our analyses.

The interpretation of our results depends on patients with

n ? 1 diagnoses being comparable to patients with

Table 3 Key statistics for the

regression models across the

eight analyses described in

Table 1

Analysis and modela a b b2 P2 Adj R2 RMSDb RMSE L1O-RMSR

1 A 0.9464 -0.0261 – – 0.9972 0.0029 0.0051

1 B 0.9486 -0.0287 0.0004 0.0592 0.9983 0.0020 0.0021 0.0042

1 C 0.9488 0.9700 – – 0.9983 0.0021 0.0037

2 A 0.9464 -0.0238 – – 0.9972 0.0026 0.0046

2 B 0.9484 -0.0260 0.0003 0.0874 0.9981 0.0017 0.0020 0.0041

2 C 0.9484 0.9729 – – 0.9981 0.0020 0.0037

3 A 0.9505 -0.0271 – – 0.9974 0.0027 0.0049

3 B 0.9516 -0.0286 0.0002 0.3210 0.9975 0.0020 0.0025 0.0053

3 C 0.9527 0.9690 – – 0.9974 0.0027 0.0043

4 A 0.9515 -0.0237 – – 0.9962 0.0026 0.0060

4 B 0.9510 -0.0230 -0.0001 0.6261 0.9958 0.0014 0.0025 0.0089

4 C 0.9528 0.9734 – – 0.9942 0.0032 0.0063

5 A 0.8582 -0.0220 – – 0.9957 0.0030 0.0049

5 B 0.8609 -0.0251 0.0005 0.0198 0.9981 0.0016 0.0019 0.0041

5 C 0.8600 0.9723 – – 0.9980 0.0020 0.0033

6 A 0.8583 -0.0212 – – 0.9957 0.0029 0.0046

6 B 0.8608 -0.0239 0.0004 0.0391 0.9977 0.0015 0.0020 0.0043

6 C 0.8600 0.9735 – – 0.9977 0.0021 0.0033

7 A 0.8613 -0.0224 – – 0.9993 0.0012 0.0019

7 B 0.8621 -0.0234 0.0001 0.1134 0.9995 0.0016 0.0010 0.0017

7 C 0.8631 0.9719 – – 0.9991 0.0013 0.0020

8 A 0.8612 -0.0201 – – 0.9955 0.0023 0.0059

8 B 0.8621 -0.0215 0.0002 0.2913 0.9957 0.0011 0.0021 0.0058

8 C 0.8622 0.9752 – – 0.9958 0.0021 0.0049

Adj. R2 adjusted R2, RMSD root-mean-squared difference, RMSE root-mean-squared error, L1O-RMSR

leave-one-out root-mean-squared residual
a Model A is the linear/additive model, Model B the quadratic, and Model C the log-transformed/multi-

plicative model (for further details, see Methods section). Due to the model specifications, b2 coefficients

are only relevant for Model B; p1 is the associated p value for the b1 coefficient. b1 coefficients for the three

models, across all eight analyses, were significant at the 0.0001 level
b This statistic is the distance between the fitted values from Models A and C, analogous to the RMSE

which is the distance between the fitted values and the observed values. The concept of distance is the

standard (weighted) Euclidean distance between the sets of observed and/or fitted values
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n diagnoses with the exception of the additional health

problem. The major concern is that patients with more

diagnoses may be afflicted with problems of different

severity from the ones with patients with fewer diagnoses.

However, the extent to which this is a problem for our

analyses directly transfers to all attempts at determining the

functional form for addition of health problems. Adjusting

for severity goes some way toward ensuring such compa-

rability. Still, the validity of our findings regarding the

relationship between number of diagnoses and HSUVs

depends on the generalizability of the MEPS data with

regard to that relationship. Our analyses are made under the

assumption that sampling error and missingness are random

with respect to the functional relationship under scrutiny.

Since we did not gather the data ourselves, we have

limited control of the quality of the data. However, it is

unlikely that there should be any systematic biases in the

collection process that would affect HRQoL values as a

function of NoD. The data were collected in an outpatient

setting, meaning that we cannot necessarily generalize to,

e.g., a hospitalized population.

Even though our analyses are carried out on mean values

computed over populations with 1000? members, only nine

strata were included. This means that the linear relationship

observed may not describe the actual trend for patients with

nine or more diagnoses. We do not suggest that the

regression models are useful in themselves, only that they

help investigate the underlying relationship between mor-

bidity, as measured by diagnoses, and HRQoL.

The observed range of mean HRQoL values in our sample

(0.948–0.742 for EQ-5D and 0.862–0.686 for SF-6D) may

limit our ability to distinguish between the predictions from

the additive and the multiplicative approaches. The problem

could be ameliorated by looking specifically at severe

Linear model (Model A)

Quadratic model (Model B)

Multiplicative model (Model C)

Number of diagnoses

Number of diagnoses

M
ea

n 
EQ

-5
D

M
ea

n 
SF

-6
D

 

(a)

(b)

EQ-5D

 SF-6D

Fig. 1 Illustration of model fit

for Models A, B, and C for the

fully adjusted analyses (age,

sex, and severity) for the EQ-5D

(a) and SF-6D (b). With

reference to Table 3,

a corresponds to analyses 4-A,

4-B, and 4-C; b corresponds to

analyses 8-A, 8-B, and 8-C

Qual Life Res (2015) 24:2823–2832 2829

123



diagnoses, but this would come at the cost of substantially

reducing the number of available observations. As it is, the

observed range of HRQoL values is based on more than

93 % of the population sample, suggesting that we are cov-

ering most of the relevant range of disease in the population.

Conclusions

The three model specifications explored in this analysis—

the linear (A), the linear with a quadratic term (B), and the

multiplicative (C) (see the ‘‘Methods’’ section)—were vir-

tually identical, indicating that a linear model adequately

represents the trend on average. Occam’s razor suggests that

the simplest model should be preferred. On this basis, we

recommend discontinuing the search for a general multi-

plicative model. The study does not support the general

notion of declining marginal disutility of health.

The observation that the average over thousands of

patients with hundreds of different diagnoses match a linear

function through number of diseases does not indicate that

there exists a general linear model that can predict the mean

HRQoL for a given combination of diagnoses from the

HRQoL of the constituent diagnoses; the averages in ques-

tion collapse a wide distribution of diagnoses that mask each

other, exacerbate each other, or behave erratically in com-

bination. The use of any general model, including the addi-

tive, is likely to lead to predictions that deviate substantially

from reality in most cases even if the deviation is unbiased

across studies. We recommend using empirical estimates of

the HRQoL for patient groups with combination health states

where this is possible. When such estimates are unattainable,

any non-empirical estimates should be made based on

expertise that allows predictions of the manner in which the

constituent health problems should be expected to interact.
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Appendix: Details of the age, sex, and severity
adjustments

Age and sex adjustment

Age- and sex-adjusted HRQoL values were computed, for

the EQ-5D and SF-6D, in the following way. In step 1, a

linear regression model was fitted to the P0 stratum (i.e.,

those individuals with zero diagnoses):

ui ¼ b1 þ b2 � ai þ b3 � si þ �i

where ui is individual i’s HRQoL (either EQ-5D or SF-6D),

ai is age (in years), and si is a sex-dummy. In step 2, the

estimated age- and sex-specific reference value (for each

pair a and s)

ua;s ¼ b1 þ b2 � aþ b3 � s

yielded age- and sex-specific deviancy from the mean

HRQoL for the P0-stratum (u0) by:

u0 � ua;s

This enabled us to define an age- and sex-adjusted

(ASA) HRQoL values (u0) for each individual:

u0i ¼ ui þ u0 � uai;si
� �

This approach does not attempt to minimize residuals on

HRQoL given age and sex for the whole MEPS panel. Rather, it

assumes that there is an independent effect of age and sex on

HRQoL, which does not interact with diagnoses. Once the

effect has been estimated, we adjust for it by taking away from

(or giving back to) all individuals the HRQoL gained (or lost) as

a result of their age and sex. The reason for restricting the

regression model that estimates the age- and sex-specific

HRQoL decrement toP0 is that this stratum is where the specific

age and sex impact on HRQoL is disentangled from that of the

diagnoses. It may help to understand the adjustment by con-

sidering that when individual i belongs to an age–sex class with

higher predicted HRQoL than the average zero-diagnosis

individual (u0\uai;si), then i’s HRQoL will be decreased by

u0 � uai;si [ 0. Inverting the inequalities shows that individu-

als with lower-than-average reference value for their HRQoL

will have increased HRQoL as with this adjustment.

Severity adjustment

Severity weights were computed for the various diagnoses

contained within the MEPS dataset by performing sub-

group analyses on individuals with exactly D as their

diagnosis, i.e., respondents in the P1 stratum. However, age

and sex differences between diagnosis-defined subpopula-

tions could also interfere. If some diagnosis subgroups

were predominantly made up of young males and others of

older females, the presence of age and/or sex gradients for

HRQoL could bias the computed severity weights, so the

procedure described below was performed with respect to

age- and sex-adjusted HRQoL values.

In step 1, we excluded all individuals who had a diagnosis

that did not occur as the sole diagnosis of at least one

respondent in the MEPS panel. In step 2, based on respondents

with exactly one diagnosis, we estimated the mean HRQoL
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loss, dD (for both the EQ-5D and SF-6D), associated with each

diagnosis. In step 3, a severity weight was assigned to each

diagnosis:

sD ¼ dD=d

where d is the average over all the dD’s computed in step 2.

This operation results in a normalized severity weight such

that sD[ 1 means that the diagnosis has a greater-than-

average impact on HRQoL, and sD\ 1 has a less-than-

average impact.

Step 1 ensures that all remaining individuals may have a

severity weight assigned to all of their diagnoses. Note also

that steps 2 and 3 result in one distinct severity weights set

for each HRQoL instrument (in our case, EQ-5D and SF-

6D). Step 1 necessitates discarding individuals who have

diagnoses that are non-weighable (because no one has only

that diagnosis; hence its independent impact on HRQoL

cannot be estimated). The subsequent re-stratification (de-

scribed below in step 4) resulted in somewhat smaller strata.

Fourteen of the 18 strata retained more than one thousand

individuals; the exceptions were stratum P8 (n = 763) under

the relaxed inclusion, and strata P6 (n = 721), P7 (n = 431)

and P8 (n = 272) under the strict inclusion.

In step 4, a new variable ‘severity-weighted number of

diagnoses’ (SWNoD) was computed for each respondent

by summing severity weights rather than the (unadjusted)

number of diagnoses. For example, a respondent with three

diagnoses D1, D2, and D3 with severity weights 0.9, 0.95,

and 1.70 would obtain a raw SWNoD of 3.55, reflecting the

increased severity. SWNoD values are subsequently roun-

ded to the nearest integer to permit re-stratification of the

data.

Appendix Fig. 2 provides a schematic representation of

the age, sex, and severity adjustment methods.

For further motivation for why the severity adjustment is

important, particularly when dealing with our research

question, consider the following example:

Example: Assume that, unknown to the observers, diagnoses can

be grouped into two types M and S, where diagnoses of type M is

associated with a HRQoL loss of 0.197 (mild) and diagnoses of

type S one of 0.225 (severe). Thus, the measured HRQoL of an

individual is (on average) 0.803 for individuals with a mild

diagnosis, and 0.775 for individuals with a severe diagnosis.

Moreover, assume that severe diagnoses are rare among those

individuals with only one diagnosis, say in a 1:9 relationship to

the mild ones, while they are ubiquitous among those with two

diagnoses. In this world, we would measure the average HRQoL

to be 9�0:803 þ 0:777
10

¼ 0:800 among those with only one

diagnosis. How would we interpret a measured average of 0.600

in HRQoL among those with two diagnoses?

Fig. 2 Schematic of

adjustments for age, sex, and

severity of diagnoses. Arrows

show dependencies. Age and

sex adjustment is made on the

basis of the P0 stratum, prior to

adjusting for severity on the

basis of the P1 stratum.

Following the severity

adjustment of diagnoses, we

have a new stratification of the

dataset (indicated on the right-

hand side)
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Certainly, this estimate fits with an additive model, since the average

measured HRQoL loss associated with one diagnosis is 0.200 and

1 – 2 9 0.200 = 0.600. But we also note that 0.7752 = 0.600

which fits with a multiplicative model when we take into account

that in our example all those who suffer from two diagnoses suffer

from two severe ones

In the example above, a multiplicative relationship is

disguised as an additive one. By choosing different values

and case mixes of mild and severe diagnoses, one can of

course construct a model in which the opposite phe-

nomenon is present just as easily.
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