78 research outputs found

    ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE

    Get PDF
    Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~−21 to −23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O ii. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe ii and Si ii absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions

    Linkage between fitness of yeast cells and adenylate kinase catalysis

    Get PDF
    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies

    Brugia malayi Excreted/Secreted Proteins at the Host/Parasite Interface: Stage- and Gender-Specific Proteomic Profiling

    Get PDF
    Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES) products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf), L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs) in the available databases. Moreover, this analysis was able to confirm the presence of 274 “hypothetical” proteins inferred from gene prediction algorithms applied to the B. malayi (Bm) genome. Not surprisingly, the majority (160/274) of these “hypothetical” proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase), MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females) compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host–parasite interaction

    L-arginine Supplementation Improves Responses to Injury and Inflammation in Dextran Sulfate Sodium Colitis

    Get PDF
    Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y+ cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS−/− mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity
    corecore