37 research outputs found

    Dose-dependent effects of Allopurinol on human foreskin fibroblast cell and human umbilical vein endothelial cell under hypoxia

    Get PDF
    Allopurinol, an inhibitor of xanthine oxidase, has been used in clinical trials of patients with cardiovascular and chronic kidney disease. These are two pathologies with extensive links to hypoxia and activation of the transcription factor hypoxia inducible factor (HIF) family. Here we analysed the effects of allopurinol treatment in two different cellular models, and their response to hypoxia. We explored the dose-dependent effect of allopurinol on Human Foreskin Fibroblasts (HFF) and Human Umbilical Vein Endothelial Cells (HUVEC) under hypoxia and normoxia. Under normoxia and hypoxia, high dose allopurinol reduced the accumulation of HIF-1α protein in HFF and HUVEC cells. Allopurinol had only marginal effects on HIF-1α mRNA level in both cellular systems. Interestingly, allopurinol effects over the HIF system were independent of prolyl-hydroxylase activity. Finally, allopurinol treatment reduced angiogenesis traits in HUVEC cells in an in vitro model. Taken together these results indicate that high doses of allopurinol inhibits the HIF system and pro-angiogenic traits in cells

    Inter-observer agreement in the assessment of endoscopic findings in ulcerative colitis

    Get PDF
    BACKGROUND: Endoscopic findings are essential in evaluating the disease activity in ulcerative colitis. The aim of this study was to evaluate how endoscopists assess individual endoscopic features of mucosal inflammation in ulcerative colitis, the inter-observer agreement, and the importance of the observers' experience. METHODS: Five video clips of ulcerative colitis were shown to a group of experienced and a group of inexperienced endoscopists. Both groups were asked to assess eight endoscopic features and the overall mucosal inflammation on a visual analogue scale. The following statistical analyses were used; Contingency tables analysis, kappa analysis, analysis of variance, Pearson linear correlation analysis, general linear models, and agreement analysis. All tests were carried out two-tailed, with a significance level of 5%. RESULTS: The inter-observer agreement ranged from very good to moderate in the experienced group and from very good to fair in the inexperienced group. There was a significantly better inter-observer agreement in the experienced group in the rating of 6 out of 9 features (p < 0.05). The experienced and inexperienced endoscopists scored the "ulcerations" significantly different. (p = 0.05). The inter-observer variation of the mean score of "erosions", "ulcerations" and endoscopic activity index in mild disease, and the scoring of "erythema" and "oedema" in moderate-severe disease was significantly higher in the inexperienced group. A correlation was seen between all the observed endoscopic features in both groups of endoscopists. Among experienced endoscopists, a set of four endoscopic variables ("Vascular pattern", "Erosions", "Ulcerations" and Friability") explained 92% of the variation in EAI. By including "Granularity" in these set 91% of the variation in EAI was explained in the group of inexperienced endoscopists. CONCLUSION: The inter-observer agreement in the rating of endoscopic features characterising ulcerative colitis is satisfactory in both groups of endoscopists but significantly higher in the experienced group. The difference in the mean score between the two groups is only significant for "ulcerations". The endoscopic variables "Vascular pattern", "Erosions", "Ulcerations" and Friability" explained the overall endoscopic activity index. Even though the present result is quite satisfactory, there is a potential of improvement. Improved grading systems might contribute to improve the consistency of endoscopic descriptions

    A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps

    Get PDF
    Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds. These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication, causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia, and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin) influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than ‘rooted’ seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather intuitive. It was more surprising that ‘rooted’ seaweeds had comparatively small impacts, particularly given that this category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from detrimental competition from seaweeds

    Probabilistic Reconstruction of Ancestral Protein Sequences

    Full text link
    Using a maximum-likelihood formalism, we have developed a method with which to reconstruct the sequences of ancestral proteins. Our approach allows the calculation of not only the most probable ancestral sequence but also of the probability of any amino acid at any given node in the evolutionary tree. Because we consider evolution on the amino acid level, we are better able to include effects of evolutionary pressure and take advantage of structural information about the protein through the use of mutation matrices that depend on secondary structure and surface accessibility. The computational complexity of this method scales linearly with the number of homologous proteins used to reconstruct the ancestral sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42365/1/239-42-2-313_42n2p313.pd

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore