3,084 research outputs found
Macrosegregation in direct-chill casting of aluminium alloys
This is the post-print version of the final paper published in Progress in Materials Science. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.Semi-continuous direct-chill (DC) casting holds a prominent position in commercial aluminium alloy processing, especially in production of large sized ingots. Macrosegregation, which is the non-uniform chemical composition over the length scale of a casting, is one of the major defects that occur during this process. The fact that macrosegregation is essentially unaffected by subsequent heat treatment (hence constitutes an irreversible defect) leaves us with little choice but to control it during the casting stage. Despite over a century of research in the phenomenon of macrosegregation in castings and good understanding of underlying mechanisms, the contributions of these mechanisms in the overall macrosegregation picture; and interplay between these mechanisms and the structure formation during solidification are still unclear. This review attempts to fill this gap based on the published data and own results. The following features make this review unique: results of computer simulations are used in order to separate the effects of different macrosegregation mechanisms. The issue of grain refining is specifically discussed in relation to macrosegregation. This report is structured as follows. Macrosegregation as a phenomenon is defined in the Introduction. In “Direct-chill casting – process parameters, solidification and structure patterns” section, direct-chill casting, the role of process parameters and the evolution of structural features in the as-cast billets are described. In “Macrosegregation in direct-chill casting of aluminium alloys” section, macrosegregation mechanisms are elucidated in a historical perspective and the correlation with DC casting process parameters and structural features are made. The issue of how to control macrosegregation in direct-chill casting is also dealt with in the same section. In “Role of grain refining” section, the effect of grain refining on macrosegregation is introduced, the current understanding is described and the contentious issues are outlined. The review is finished with conclusion remarks and outline for the future research.The Netherlands
Institute for Metals Researc
The effects of laryngeal mask airway passage simulation training on the acquisition of undergraduate clinical skills: a randomised controlled trial
Background\ud
Effective use of the laryngeal mask airway (LMA) requires learning proper insertion technique in normal patients undergoing routine surgical procedures. However, there is a move towards simulation training for learning practical clinical skills, such as LMA placement. The evidence linking different amounts of mannequin simulation training to the undergraduate clinical skill of LMA placement in real patients is limited. The purpose of this study was to compare the effectiveness in vivo of two LMA placement simulation courses of different durations. \ud
\ud
Methods\ud
Medical students (n = 126) enrolled in a randomised controlled trial. Seventy-eight of these students completed the trial. The control group (n = 38) received brief mannequin training while the intervention group (n = 40) received additional more intensive mannequin training as part of which they repeated LMA insertion until they were proficient. The anaesthetists supervising LMA placements in real patients rated the participants' performance on assessment forms. Participants completed a self-assessment questionnaire. \ud
\ud
Results\ud
Additional mannequin training was not associated with improved performance (37% of intervention participants received an overall placement rating of > 3/5 on their first patient compared to 48% of the control group, = 0.81, p = 0.37). The agreement between the participants and their instructors in terms of LMA placement success rates was poor to fair. Participants reported that mannequins were poor at mimicking reality. \ud
\ud
Conclusions\ud
The results suggest that the value of extended mannequin simulation training in the case of LMA placement is limited. Educators considering simulation for the training of practical skills should reflect on the extent to which the in vitro simulation mimics the skill required and the degree of difficulty of the procedure. \ud
\u
Corrosion fatigue of Ti-6Al-4V coupons manufactured by directed energy deposition
Titanium is a versatile biocompatible metal that is desirable in additively manufactured medical implant devices. However, additively manufactured parts have particular microstructures, porosity, residual stress, and surface conditions which can have a strong impact on fatigue performance. Implants have an added complexity from the saline operating environment and the associated impact on the safe design life. Equally, direct energy deposition induces a complex thermal history which, if not carefully controlled, can significantly alter the mechanical/material properties of the component. This study investigates the decrease in fatigue life, in an in vitro body fluid simulation using Ringer's solution, observed in Ti-6Al-4V specimens extracted from coupons manufactured by directed energy deposition. An interrupted deposition strategy was employed to control build regularity, which appeared to influence certain mechanical properties, including corrosion fatigue life. An ≈50% decrease in fatigue life was observed in Ringer's solution at 6 Hz loading frequency, clearly important in designing implants
MHC class IIâ expressing thymocytes suppress invariant NKT cell development
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141892/1/imcb200878.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141892/2/imcb200878-sup-0001.pd
Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions
The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is.i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA.Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA.The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans.This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits
Anti-nausea effects and pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin model of nausea and vomiting in the dog: a blinded crossover study
Nausea is a subjective sensation which is difficult to measure in non-verbal species. The aims of this study were to determine the efficacy of three classes of antiemetic drugs in a novel low dose cisplatin model of nausea and vomiting and measure change in potential nausea biomarkers arginine vasopressin (AVP) and cortisol. A four period cross-over blinded study was conducted in eight healthy beagle dogs of both genders. Dogs were administered 18 mg/m2 cisplatin intravenously, followed 45 min later by a 15 min infusion of either placebo (saline) or antiemetic treatment with ondansetron (0.5 mg/kg; 5-HT3 antagonist), maropitant (1 mg/kg; NK1 antagonist) or metoclopramide (0.5 mg/kg; D2 antagonist). The number of vomits and nausea associated behaviours, scored on a visual analogue scale, were recorded every 15 min for 8 h following cisplatin administration. Plasma samples were collected to measure AVP, cortisol and antiemetic drug concentrations
Design and rationale of a multi-center, pragmatic, open-label randomized trial of antimicrobial therapy - the study of clinical efficacy of antimicrobial therapy strategy using pragmatic design in Idiopathic Pulmonary Fibrosis (CleanUP-IPF) clinical trial
Compelling data have linked disease progression in patients with idiopathic pulmonary fibrosis (IPF) with lung dysbiosis and the resulting dysregulated local and systemic immune response. Moreover, prior therapeutic trials have suggested improved outcomes in these patients treated with either sulfamethoxazole/ trimethoprim or doxycycline. These trials have been limited by methodological concerns. This trial addresses the primary hypothesis that long-term treatment with antimicrobial therapy increases the time-to-event endpoint of respiratory hospitalization or all-cause mortality compared to usual care treatment in patients with IPF. We invoke numerous innovative features to achieve this goal, including: 1) utilizing a pragmatic randomized trial design; 2) collecting targeted biological samples to allow future exploration of 'personalized' therapy; and 3) developing a strong partnership between the NHLBI, a broad range of investigators, industry, and philanthropic organizations. The trial will randomize approximately 500 individuals in a 1:1 ratio to either antimicrobial therapy or usual care. The site principal investigator will declare their preferred initial antimicrobial treatment strategy (trimethoprim 160 mg/ sulfamethoxazole 800 mg twice a day plus folic acid 5 mg daily or doxycycline 100 mg once daily if body weight is < 50 kg or 100 mg twice daily if ≥50 kg) for the participant prior to randomization. Participants randomized to antimicrobial therapy will receive a voucher to help cover the additional prescription drug costs. Additionally, those participants will have 4-5 scheduled blood draws over the initial 24 months of therapy for safety monitoring. Blood sampling for DNA sequencing and genome wide transcriptomics will be collected before therapy. Blood sampling for transcriptomics and oral and fecal swabs for determination of the microbiome communities will be collected before and after study completion. As a pragmatic study, participants in both treatment arms will have limited in-person visits with the enrolling clinical center. Visits are limited to assessments of lung function and other clinical parameters at time points prior to randomization and at months 12, 24, and 36. All participants will be followed until the study completion for the assessment of clinical endpoints related to hospitalization and mortality events. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02759120
Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol
© 2017 The Author(s). Toll-like receptors (TLRs) are major players of the innate immune system. Once activated, they trigger a signalling cascade that leads to NF-ΰ B translocation from the cytoplasm to the nucleus. Single cell analysis shows that NF-ΰ B signalling dynamics are a critical determinant of transcriptional regulation. Moreover, the outcome of innate immune response is also affected by the cross-talk between TLRs and estrogen signalling. Here, we characterized the dynamics of TLR5 signalling, responsible for the recognition of flagellated bacteria, and those changes induced by estradiol in its signalling at the single cell level. TLR5 activation in MCF7 cells induced a single and sustained NF-k B translocation into the nucleus that resulted in high NF-k B transcription activity. The overall magnitude of NF-k B transcription activity was not influenced by the duration of the stimulus. No significant changes are observed in the dynamics of NF-k B translocation to the nucleus when MCF7 cells are incubated with estradiol. However, estradiol significantly decreased NF-k B transcriptional activity while increasing TLR5-mediated AP-1 transcription. The effect of estradiol on transcriptional activity was dependent on the estrogen receptor activated. This fine tuning seems to occur mainly in the nucleus at the transcription level rather than affecting the translocation of the NF-k B transcription factor
Efficiently Correcting Matrix Products
We study the problem of efficiently correcting an erroneous product of two
matrices over a ring. Among other things, we provide a randomized
algorithm for correcting a matrix product with at most erroneous entries
running in time and a deterministic -time
algorithm for this problem (where the notation suppresses
polylogarithmic terms in and ).Comment: Fixed invalid reference to figure in v
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
- …