25 research outputs found
The academic backbone: longitudinal continuities in educational achievement from secondary school and medical school to MRCP(UK) and the specialist register in UK medical students and doctors
Background: Selection of medical students in the UK is still largely based on prior academic achievement, although doubts have been expressed as to whether performance in earlier life is predictive of outcomes later in medical school or post-graduate education. This study analyses data from five longitudinal studies of UK medical students and doctors from the early 1970s until the early 2000s. Two of the studies used the AH5, a group test of general intelligence (that is, intellectual aptitude). Sex and ethnic differences were also analyzed in light of the changing demographics of medical students over the past decades.
Methods: Data from five cohort studies were available: the Westminster Study (began clinical studies from 1975 to 1982), the 1980, 1985, and 1990 cohort studies (entered medical school in 1981, 1986, and 1991), and the University College London Medical School (UCLMS) Cohort Study (entered clinical studies in 2005 and 2006). Different studies had different outcome measures, but most had performance on basic medical sciences and clinical examinations at medical school, performance in Membership of the Royal Colleges of Physicians (MRCP(UK)) examinations, and being on the General Medical Council Specialist Register.
Results: Correlation matrices and path analyses are presented. There were robust correlations across different years at medical school, and medical school performance also predicted MRCP(UK) performance and being on the GMC Specialist Register. A-levels correlated somewhat less with undergraduate and post-graduate performance, but there was restriction of range in entrants. General Certificate of Secondary Education (GCSE)/O-level results also predicted undergraduate and post-graduate outcomes, but less so than did A-level results, but there may be incremental validity for clinical and post-graduate performance. The AH5 had some significant correlations with outcome, but they were inconsistent. Sex and ethnicity also had predictive effects on measures of educational attainment, undergraduate, and post-graduate performance. Women performed better in assessments but were less likely to be on the Specialist Register. Non-white participants generally underperformed in undergraduate and post-graduate assessments, but were equally likely to be on the Specialist Register. There was a suggestion of smaller ethnicity effects in earlier studies.
Conclusions: The existence of the Academic Backbone concept is strongly supported, with attainment at secondary school predicting performance in undergraduate and post-graduate medical assessments, and the effects spanning many years. The Academic Backbone is conceptualized in terms of the development of more sophisticated underlying structures of knowledge ('cognitive capital’ and 'medical capital’). The Academic Backbone provides strong support for using measures of educational attainment, particularly A-levels, in student selection
Construct-level predictive validity of educational attainment and intellectual aptitude tests in medical student selection: meta-regression of six UK longitudinal studies
Background: Measures used for medical student selection should predict future performance during training. A problem for any selection study is that predictor-outcome correlations are known only in those who have been selected, whereas selectors need to know how measures would predict in the entire pool of applicants. That problem of interpretation can be solved by calculating construct-level predictive validity, an estimate of true predictor-outcome correlation across the range of applicant abilities.
Methods: Construct-level predictive validities were calculated in six cohort studies of medical student selection and training (student entry, 1972 to 2009) for a range of predictors, including A-levels, General Certificates of Secondary Education (GCSEs)/O-levels, and aptitude tests (AH5 and UK Clinical Aptitude Test (UKCAT)). Outcomes included undergraduate basic medical science and finals assessments, as well as postgraduate measures of Membership of the Royal Colleges of Physicians of the United Kingdom (MRCP(UK)) performance and entry in the Specialist Register. Construct-level predictive validity was calculated with the method of Hunter, Schmidt and Le (2006), adapted to correct for right-censorship of examination results due to grade inflation.
Results: Meta-regression analyzed 57 separate predictor-outcome correlations (POCs) and construct-level predictive validities (CLPVs). Mean CLPVs are substantially higher (.450) than mean POCs (.171). Mean CLPVs for first-year examinations, were high for A-levels (.809; CI: .501 to .935), and lower for GCSEs/O-levels (.332; CI: .024 to .583) and UKCAT (mean = .245; CI: .207 to .276). A-levels had higher CLPVs for all undergraduate and postgraduate assessments than did GCSEs/O-levels and intellectual aptitude tests. CLPVs of educational attainment measures decline somewhat during training, but continue to predict postgraduate performance. Intellectual aptitude tests have lower CLPVs than A-levels or GCSEs/O-levels.
Conclusions: Educational attainment has strong CLPVs for undergraduate and postgraduate performance, accounting for perhaps 65% of true variance in first year performance. Such CLPVs justify the use of educational attainment measure in selection, but also raise a key theoretical question concerning the remaining 35% of variance (and measurement error, range restriction and right-censorship have been taken into account). Just as in astrophysics, ‘dark matter’ and ‘dark energy’ are posited to balance various theoretical equations, so medical student selection must also have its ‘dark variance’, whose nature is not yet properly characterized, but explains a third of the variation in performance during training. Some variance probably relates to factors which are unpredictable at selection, such as illness or other life events, but some is probably also associated with factors such as personality, motivation or study skills
Geriatric rehabilitation of stroke patients in nursing homes: a study protocol.
Contains fulltext :
88482.pdf (publisher's version ) (Open Access)BACKGROUND: Geriatric patients are typically underrepresented in studies on the functional outcome of rehabilitation after stroke. Moreover, most geriatric stroke patients do probably not participate in intensive rehabilitation programs as offered by rehabilitation centers. As a result, very few studies have described the successfulness of geriatric stroke rehabilitation in nursing home patients, although it appears that the majority of these patients are being discharged back to the community, rather than being transferred to residential care. Nevertheless, factors associated with the successfulness of stroke rehabilitation in nursing homes or skilled nursing facilities are largely unknown. The primary goal of this study is, therefore, to assess the factors that uniquely contribute to the successfulness of rehabilitation in geriatric stroke patients that undergo rehabilitation in nursing homes. A secondary goal is to investigate whether these factors are similar to those associated with the outcome of stroke rehabilitation in the literature. METHODS/DESIGN: This study is part of the Geriatric Rehabilitation in AMPutation and Stroke (GRAMPS) study in the Netherlands. It is a longitudinal, observational, multicenter study in 15 nursing homes in the Southern part of the Netherlands that aims to include at least 200 patients. All participating nursing homes are selected based on the existence of a specialized rehabilitation unit and the provision of dedicated multidisciplinary care. Patient characteristics, disease characteristics, functional status, cognition, behavior, and caregiver information, are collected within two weeks after admission to the nursing home. The first follow-up is at discharge from the nursing home or one year after inclusion, and focuses on functional status and behavior. Successful rehabilitation is defined as discharge from the nursing home to an independent living situation within one year after admission. The second follow-up is three months after discharge in patients who rehabilitated successfully, and assesses functional status, behavior, and quality of life. All instruments used in this study have shown to be valid and reliable in rehabilitation research or are recommended by the Netherlands Heart Foundation guidelines for stroke rehabilitation.Data will be analyzed using SPSS 16.0. Besides descriptive analyses, both univariate and multivariate analyses will be performed with the purpose of identifying associated factors as well as their unique contribution to determining successful rehabilitation. DISCUSSION: This study will provide more information about geriatric stroke rehabilitation in Dutch nursing homes. To our knowledge, this is the first large study that focuses on the determinants of success of geriatric stroke rehabilitation in nursing home patients
