11 research outputs found

    Bryozoans are Major Modern Builders of South Atlantic Oddly Shaped Reefs

    Get PDF
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27961-6.In major modern reef regions, either in the Indo-Pacific or the Caribbean, scleractinian corals are described as the main reef framework builders, often associated with crustose coralline algae. We used underwater cores to investigate Late Holocene reef growth and characterise the main framework builders in the Abrolhos Shelf, the largest and richest modern tropical reef complex in the South Western Atlantic, a scientifically underexplored reef province. Rather than a typical coralgal reef, our results show a complex framework building system dominated by bryozoans. Bryozoans were major components in all cores and age intervals (2,000 yrs BP), accounting for up to 44% of the reef framework, while crustose coralline algae and coral accounted for less than 28 and 23%, respectively. Reef accretion rates varied from 2.7 to 0.9 mm yr−1, which are similar to typical coralgal reefs. Bryozoan functional groups encompassed 20 taxa and Celleporaria atlantica (Busk, 1884) dominated the framework at all cores. While the prevalent mesotrophic conditions may have driven suspensionfeeders’ dominance over photoautotrophs and mixotrophs, we propose that a combination of historical factors with the low storm-disturbance regime of the tropical South Atlantic also contributed to the region’s low diversity, and underlies the unique mushroom shape of the Abrolhos pinnacles.We thank CNPq/FAPES-Sisbiota/PELD, CAPES/IODP, CAPES/CiĂȘncias do Mar, and ANP/Brasoil for long term project funding. We also thank ICMBio for research permits and field logistic support, and Conservation International for providing and authorizing the use of the IKONOS image. JMW and JCB are International Visiting Researcher at UFES and JBRJ, supported by the Science Without Borders program. ZĂĄ Cajueiro provided invaluable field support and Ronaldo Francini, Carlos Janovitch and Lucio Engler helped in the drilling operations. This is a contribution from the Rede Abrolhos (abrolhos.org)

    Loss of coral reef growth capacity to track future increases in sea level

    Get PDF
    Water-depths above coral reefs is predicted to increase due to global sea-level rise (SLR). As ecological degradation inhibits the vertical accretion of coral reefs, it is likely that coastal wave exposure will increase but there currently exists a lack of data in projections concerning local rates of reef growth and local SLR. In this study we have aggregated ecological data of more than 200 tropical western Atlantic and Indian Ocean reefs and calculated their vertical growth which we have then compared with recent and projected rates of SLR across different Representative Concentration Pathway (RCP) scenarios. While many reefs currently show vertical growth that would be sufficient to keep-up with recent historic SLR, future projections under scenario RCP4.5 reveal that without substantial ecological recovery many reefs will not have the capacity to track SLR. Under RCP8.5, we predict that mean water depth will increase by over half a metre by 2100 across the majority of reefs. We found that coral cover strongly predicted whether a reef could track SLR, but that the majority of reefs had coral cover significantly lower than that required to prevent reef submergence. To limit reef submergence, and thus the impacts of waves and storms on adjacent coasts, climate mitigation and local impacts that reduce coral cover (e.g., local pollution and physical damage through development land reclamation) will be necessary

    The construction of causal networks to estimate coral bleaching intensity

    Full text link
    Current metrics for predicting bleaching episodes, e.g. NOAA's Coral Reef Watch Program, do not seem to apply well to Brazil's marginal reefs located in Bahia state and alternative predictive approaches must be sought for effective long term management. Bleaching occurrences at Abrolhos have been observed since the 1990s but with a much lower frequency/extent than for other reef systems worldwide. We constructed a Bayesian Belief Network (BN) to back-predict the intensity of bleaching events and learn how local and regional scale forcing factors interact to enhance or alleviate coral bleaching specific to Abrolhos. Bleaching intensity data were collected for several reef sites across Bahia state coast (~12°-20°S; 37°-40°W) during the austral summer 1994-2005 and compared to environmental data: sea surface temperature (SST), diffuse light attenuation coefficient at 490 nm (K490), rain precipitation, wind velocities, and El Niño Southern Oscillation (ENSO) proxies. Conditional independence tests were calculated to produce four specialized BNs, each with specific factors that likely regulate bleaching intensity. All specialized BNs identified that a five-day accumulated SST proxy (SSTAc5d) was the exclusive parent node for coral bleaching producing a total predictive rate of 88% based on SSTAc5d state. When SSTAc5d was simulated as unknown, the Thermal-Eolic Resultant BN kept the total predictive rate of 88%. Our approach has produced initial means to predict beaching intensity at Abrolhos. However, the robustness of the model required for management purposes must be further (and regularly) operationally tested with new in situ and remote sensing data. © 2013 Elsevier Ltd

    Between-Habitat Variation of Benthic Cover, Reef Fish Assemblage and Feeding Pressure on the Benthos at the Only Atoll in South Atlantic: Rocas Atoll, NE Brazil

    No full text

    Overview of the order Zoantharia (Cnidaria: Anthozoa) in Brazil

    No full text
    corecore