3 research outputs found

    Potential of Extensification of European and Dutch Agriculture for a More Sustainable Food System Focusing on Nitrogen and Livestock

    No full text
    Most global strategies for future food security focus on sustainable intensification of production of food and involve an increase of nitrogen (N) fertilizer use, livestock production and risk of N pollution. In this chapter, we explore the potential of sustainable extensification for agriculture in the European Union (EU) and the Netherlands by analyzing cases and scenario studies focusing on reducing N inputs and livestock densities. Benefits of extensification to society include higher local biodiversity and less environmental pollution. Societal costs of N losses in the EU from agriculture are substantial and for 2008 are here estimated at 0.3-1.9% of the gross domestic product (GDP). Extensification also has risks such as a reduction of yields and therewith a decrease of both GDP and farm income. This also implies a smaller contribution to global food production and, potentially, an increase of global demand for land. For N-intensive agricultural systems in northwest EU, a reduction of N fertilization rate and livestock densities of up to 30% would reduce the external cost of N pollution to such an extent that society as a whole would benefit. However, compensation would be needed for net loss of farm income, e.g., by price premiums for cleaner production or improved animal welfare. Extensification scenarios with > 30% decrease of livestock production would require adjustment of human diets. A 2030 scenario for the EU halving consumption and production of animal products (demitarian diet) is here estimated to reduce N pollution by 10%, benefits human health and would transform the EU from a feed importer to a food exporter

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access
    corecore