103 research outputs found
On the Stability and Structural Dynamics of Metal Nanowires
This article presents a brief review of the nanoscale free-electron model,
which provides a continuum description of metal nanostructures. It is argued
that surface and quantum-size effects are the two dominant factors in the
energetics of metal nanowires, and that much of the phenomenology of nanowire
stability and structural dynamics can be understood based on the interplay of
these two competing factors. A linear stability analysis reveals that metal
nanocylinders with certain magic conductance values G=1, 3, 6, 12, 17, 23, 34,
42, 51, 67, 78, 96, ... times the conductance quantum are exceptionally stable.
A nonlinear dynamical simulation of nanowire structural evolution reveals a
universal equilibrium shape consisting of a magic cylinder suspended between
unduloidal contacts. The lifetimes of these metastable structures are also
computed.Comment: 8 pages, 6 figure
Metabolic rate and rates of protein turnover in food-deprived cuttlefish, Sepia officinalis (Linnaeus 1758)
To determine the metabolic response to food deprivation, cuttlefish (Sepia officinalis) juveniles were either fed, fasted (3 to 5 days food deprivation), or starved (12 days food deprivation). Fasting resulted in a decrease in triglyceride levels in the digestive gland, and after 12 days, these lipid reserves were essentially depleted. Oxygen consumption was decreased to 53% and NH4 excretion to 36% of the fed group following 3-5 days of food deprivation. Oxygen consumption remained low in the starved group, but NH4 excretion returned to the level recorded for fed animals during starvation. The fractional rate of protein synthesis of fasting animals decreased to 25% in both mantle and gill compared with fed animals and remained low in the mantle with the onset of starvation. In gill, however, protein synthesis rate increased to a level that was 45% of the fed group during starvation. In mantle, starvation led to an increase in cathepsin A-, B-, H-, and L-like enzyme activity and a 2.3-fold increase in polyubiquitin mRNA that suggested an increase in ubiquitin-proteasome activity. In gill, there was a transient increase in the polyubiquitin transcript levels in the transition from fed through fasted to the starved state and cathepsin A-, B-, H-, and L-like activity was lower in starved compared with fed animals. The response in gill appears more complex, as they better maintain rates of protein synthesis and show no evidence of enhanced protein breakdown through recognized catabolic processes
Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path
‘Even though it might take me a while, in the end, I understand it’: a longitudinal case study of interactions between a conceptual change strategy and student motivation, interest and confidence
Although there have been many investigations of the social, motivational, and emotional aspects of conceptual
change, there have been few studies investigating the intersection of these factors with cognitive aspects in the
regular classroom. Using a conceptual change approach, this case study reports experiences of a student of low to
average prior attainment who achieved high levels of conceptual gains in five science topics over a two-year
period. Her experience in the cognitive, social and affective domains was probed through analysis of interviews,
student artefacts, video recordings of classroom learning, pre/post-tests and questionnaire results. For this student,
peripheral or incidental persuasion of belonging to a supportive small group initially led to greater engagement
with the construction of understanding through production of multiple student-generated representations,
resulting in improved self-confidence and high levels of conceptual change. Evidence of transfer from performance
to mastery approach goals, adoption of positive activating emotions and increased interest in science were
observed. This study highlights that adoption of a multidimensional conceptual change approach with judicious
organisation of small groups to support construction of verbal, pictorial and written representations of
understanding may bring about changes in motivational stance, self-confidence and emotions to maximise
conceptual change
Achievement motives and emotional processes in children during problem-solving: Two experimental studies of their relation to performance in different achievement goal conditions
In two studies, the influence of key emotional and motivational factors on performance in different achievement goal-type situations is examined. In study 1, based on 314 sixth-graders, two types of goal situations were induced; performance and mastery. The goals were examined with respect to important antecedents (e.g., motive dispositions) and several consequences (e.g., performance, satisfaction, pleasant affect, worry, and emotionality). The results showed that the motive to achieve success (Ms) produced positive affects, satisfaction, and increased performance, whereas the motive to avoid failure (Mf) produced worries and performance reduction. In study 2, based on 331 sixth-graders, three types of goal situations were induced; performance–approach, performance–avoidance, and mastery goals. The findings revealed that the most important single factors positively related to performance were Ms and mastery–goal situation. In addition, high Ms pupils performed better under mastery condition than under performance condition. Finally, avoidance-goal situation accentuate the negative effects of high Mf on performance
Culture Enriched Molecular Profiling of the Cystic Fibrosis Airway Microbiome
The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF) airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa) and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads). 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured
Development and Validation of a Nurse Station Ergonomics Assessment Tool
Background: Nurse stations are one of the primary units for supporting effective functioning of any hospital. They are important working environments that demand adherence to known ergonomic principles for the well-being of both staff and patients. The aim of this study was to develop a psychometrically tested tool for the assessment of the ergonomic conditions of nurse workstations in hospitals.
Methods: Ten hospitals, with a total of 133 nurse stations participated in this mixed-methods research. The domains and items of the tool were developed based on a literature review, an experts’ panel, and interviews with nurses.
Results: The final nurse station ergonomic assessment (NSEA) tool has good psychometric properties. Validity was assessed by face validity and content validity. Reliability was evaluated using inter-rater agreement and test-retest reliability analyses with a four-week interval between assessments. The NSEA is comprised of 64 items across eight domains: layout and location (7 items), workspace (11 items), security-safety (5 items), environmental conditions (8 items), counter (8 items), chair (13 items), desk (9 items), and monitor (3 items).
Conclusions: The NSEA adds to the literature a tool for managers to ensure they comply with legal requirements and support best practice for those working on hospital wards. The NSEA can be used to identify challenges for healthcare professionals who use nurse stations and support the execution of targeted interventions to improve human-environment interaction
- …
