11 research outputs found

    Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus

    Get PDF
    The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system

    Cerebral cortical tissue damage after hemorrhagic hypotension in near-term born lambs.

    No full text
    Item does not contain fulltextHypotension reduces cerebral O(2) supply, which may result in brain cell damage and loss of brain cell function in the near-term neonate. The aim is to elucidate 1) to what extent the functional disturbance of the cerebral cortex, as measured with electrocortical brain activity (ECBA), is related to cerebral cortical tissue damage, as estimated by MAP2; and 2) whether there is a relationship between the glutamate, nitric oxide (NO), cGMP pathway and the development of cerebral cortical tissue damage after hemorrhagic hypotension. Seven lambs were delivered at 131 d of gestation. Hypotension was induced by withdrawal of blood until mean arterial blood pressure was reduced to 30% of normotension. Cerebral O(2) supply, consumption, and ECBA were calculated in normotensive conditions and after 2.5 h of hypotension. Concentrations of glutamate and aspartate in cerebrospinal fluid (CSF), NO(2) and NO(3) (NOx) in plasma, and cGMP in cortical brain tissue were determined in both conditions. CSF and brain tissue from siblings were used to determine normotensive values. Cortical neuronal damage was detected after 2.5 h of hypotension. ECBA was negatively related to the severity of the cortical damage. ECBA was related to respectively glutamate, NOx, and cGMP concentrations. In conclusion, cortical neuronal damage is detected after 2.5 h of hemorrhagic hypotension in the near-term born lamb. The damage is reflected by a reduction of ECBA. The glutamate, NOx, cGMP pathway is likely to be involved in the pathogenesis of cerebral cortical damage

    Regulation of gap junctions by protein phosphorylation

    No full text
    Gap junctions are constituted by intercellular channels and provide a pathway for transfer of ions and small molecules between adjacent cells of most tissues. The degree of intercellular coupling mediated by gap junctions depends on the number of gap junction channels and their activity may be a function of the state of phosphorylation of connexins, the structural subunit of gap junction channels. Protein phosphorylation has been proposed to control intercellular gap junctional communication at several steps from gene expression to protein degradation, including translational and post-translational modification of connexins (i.e., phosphorylation of the assembled channel acting as a gating mechanism) and assembly into and removal from the plasma membrane. Several connexins contain sites for phosphorylation for more than one protein kinase. These consensus sites vary between connexins and have been preferentially identified in the C-terminus. Changes in intercellular communication mediated by protein phosphorylation are believed to control various physiological tissue and cell functions as well as to be altered under pathological conditions

    Experimental Models of Itch

    No full text
    International audiencePruritus can be defined as an unpleasant cutaneous sensation that leads to the need to scratch. This “umbrella definition” was proposed more than 360 years ago by the German physician Samuel Hafenreffer and does not describe the complexity of this phenomenon. Activation and control of pruritus may occur at different levels of the skin-brain connection1 like pruritoceptive itch, neurogenic itch, neuropathic itch and psychogenic itch. Because they are different types of pruritus, it is impossible to develop a “universal model of pruritus” and so, different categories of models, according to the purpose of the study, are available. It is obvious that no model is perfect. Each model exhibits advantages for a particular kind of study, and is also restricted by limitations that impede its use in other studies
    corecore