57 research outputs found
Whatever the Weather: Ambient Temperature Does Not Influence the Proportion of Males Born in New Zealand
BACKGROUND: The proportion of male births has been shown to be over 50% in temperate climates around the world. Given that fluctuations in ambient temperature have previously been shown to affect sex allocation in humans, we examined the hypothesis that ambient temperature predicts fluctuations in the proportion of male births in New Zealand. METHODOLOGY/PRINCIPAL FINDINGS: We tested three main hypotheses using time series analyses. Firstly, we used historical annual data in New Zealand spanning 1876-2009 to test for a positive effect of ambient temperature on the proportion of male births. The proportion of males born ranged by 3.17%, from 0.504 to 0.520, but no significant relationship was observed between male birth rates and mean annual temperature in the concurrent or previous years. Secondly, we examined whether changes in annual ambient temperature were negatively related to the proportion of male stillbirths from 1929-2009 and whether the proportion of male stillbirths negatively affected the proportion of male live births. We found no evidence that fewer male stillbirths occurred during warmer concurrent or previous years, though a declining trend in the proportion of male stillbirths was observed throughout the data. Thirdly, we tested whether seasonal ambient temperatures, or deviations from those seasonal patterns, were positively related to the proportion of male births using monthly data from 1980-2009. Patterns of male and female births are seasonal, but very similar throughout the year, resulting in a non-seasonal proportion of male births. However, no cross correlations between proportion of male births and lags of temperature were significant. CONCLUSIONS: Results showed, across all hypotheses under examination, that ambient temperatures were not related to the proportion of male births or the proportion of male stillbirths in New Zealand. While there is evidence that temperature may influence human sex allocation elsewhere, such effects of temperature are not universal
Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea
Background: Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is
usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of
oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which
occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation
(SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied.
The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring
interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA.
Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively
subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was
instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fastresponse
oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2
and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA.
Results: Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE]
and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial
SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly
lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of
PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9
mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first
apnea dip, respectively.
Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring
interruption of O2 supply induced by obstructive apneas mimicking OSA
Temporal Dynamics and Impact of Climate Factors on the Incidence of Zoonotic Cutaneous Leishmaniasis in Central Tunisia
Old world cutaneous leishmaniasis is a vector-borne disease occurring in rural areas of developing countries. The main reservoirs are the rodents Psammomys obesus and Meriones shawi. Zoonotic Leishmania transmission cycle is maintained in the burrows of rodents where the sand fly Phlebotomus papatasi finds the ideal environment and source of blood meals. In the present study we showed seasonality of the incidence of disease during the same cycle with an inter-epidemic period ranging from 4 to 7 years. We evaluated the impact of climate variables (rainfall, humidity and temperature) on the incidence of zoonotic cutaneous leishmaniais in central Tunisia. We confirmed that the risk of disease is mainly influenced by the humidity related to the months of July to September during the same season and mean rainfall lagged by 12 to 14 months
Extrapolation for Time-Series and Cross-Sectional Data
Extrapolation methods are reliable, objective, inexpensive, quick, and easily automated. As a result, they are widely used, especially for inventory and production forecasts, for operational planning for up to two years ahead, and for long-term forecasts in some situations, such as population forecasting. This paper provides principles for selecting and preparing data, making seasonal adjustments, extrapolating, assessing uncertainty, and identifying when to use extrapolation. The principles are based on received wisdom (i.e., experts’ commonly held opinions) and on empirical studies. Some of the more important principles are:• In selecting and preparing data, use all relevant data and adjust the data for important events that occurred in the past.• Make seasonal adjustments only when seasonal effects are expected and only if there is good evidence by which to measure them.• In extrapolating, use simple functional forms. Weight the most recent data heavily if there are small measurement errors, stable series, and short forecast horizons. Domain knowledge and forecasting expertise can help to select effective extrapolation procedures. When there is uncertainty, be conservative in forecasting trends. Update extrapolation models as new data are received.• To assess uncertainty, make empirical estimates to establish prediction intervals.• Use pure extrapolation when many forecasts are required, little is known about the situation, the situation is stable, and expert forecasts might be biased
The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai, China
Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping
Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods
With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage
Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention
- …
