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Abstract In seasonal adjustment a time series is considered as a juxtaposition of
several components, the trend-cycle, and the seasonal and irregular components. The
Bureau of the Census X-11 method, based on moving averages, correction of large
errors and trading day adjustments, has long dominated. With the success of ARIMA
modelling at the end of the 20th century, methods with better outlier detection and
trading day corrections by regression with ARIMA errors have appeared, with the
regARIMA module of Census X-12-ARIMA or Bank of Spain TRAMO-SEATS.
SEATS consists of extracting the components by anARIMA-model-based unobserved
components approach. This means that models are used for each component such that
the sum of the components is compatible with the ARIMA model for the corrected
time series. The underlying theory of the SEATS program is studied in many papers
but there is no complete and systematic description of its output. Our purpose is to
examine SEATS text output and to explain the results in simple words and formulas.
This is done on a simple example, a time series with a non-seasonal model so that
the computations can be verified step by step. The principles behind SEATS are first
described, including the admissible decompositions and the canonical decomposition,
and the derivation of the Wiener-Kolmogorov filter. Then the example is introduced:
the interest rates ofUScertificates of deposits. The text output fromSEATS is presented
in edited form in several tables. Finally, the main results are checked on the example
by means of a Microsoft Excel workbook and direct computations. In particular, the
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forecasts and backcasts are obtained; the admissible and canonical decompositions
with two components are discussed; the filters are first derived using autocorrelations
of two auxiliary ARMA processes, then applied on the prolonged time series; and the
characteristics of the estimates, the revisions and the growth rates are analyzed.

Keywords SEATS · Seasonal adjustment · Admissible decomposition ·
Canonical decomposition · Wiener-Kolmogorov filter

JEL Classification C22 · C82 · C87

1 Introduction

Seasonal adjustment is fundamental for the analysis and interpretation of macro-
economic time series. The series is considered as a juxtaposition of several com-
ponents: the trend-cycle, the seasonal component and the irregular component. A
seasonally adjusted series is obtained by removing the seasonal component.

During the second half of the 20th century, the Bureau of the Census X-11 method
(Shiskin and Eisenpress 1957) has dominated. It is based on a mixture of statistical
techniques mainly moving averages, treatment of atypical observations and trading
day adjustments. For a nice illustrated example showing the internals of X-11, see
Ladiray and Quenneville (2002). An alternative approach under the form of an Excel
file is available (Online Resource 1).

Statistics Canada X-11-ARIMA (Dagum 1980) has introduced autoregressive inte-
grated moving average (ARIMA) modelling in particular to extend the series in the
past and in the future in order to avoid end-adjustments in the moving averages. Cen-
sus X-12-ARIMA (Findley et al. 1998) has improved on this by including a better
outlier detection procedure and trading day corrections by regression with ARIMA
errors, within a regARIMA module, while leaving nearly unchanged the old extrac-
tion of components by moving averages. Bank of Spain TRAMO-SEATS (Gómez
and Maravall 1994, 2001a, b) has used a more powerful automatic model selection
(AMS) procedure called TRAMO (Time series Regression with ARIMA noise, Miss-
ing values and Outliers), see below, before a very different signal extraction-based
procedure called SEATS (Signal Extraction in ARIMA Time Series). While keeping
regARIMA and the available model selection procedures, versions of X-12-ARIMA
after version 0.3 have added the automdl spec based on TRAMO. Now (Time Series
Research Staff 2013), the Bureau of the Census X-13ARIMA-SEATS has appeared,
with few changes on regARIMA and automdl, but offering a choice between SEATS
and the old X-11 decomposition procedure, with some improvements for the lat-
ter. Therefore, the paper is valid for TRAMO-SEATS but also for the SEATS part
in X-13ARIMA-SEATS. It should also be valid for JDemetra+ which intends to be
a re-implementation of TRAMO-SEATS and X-13ARIMA-SEATS using the same
concepts and algorithms. Before going into the details, let us mention the basic ingre-
dients of these two modules, TRAMO (or regARIMA), on the one hand, and SEATS,
on the other hand.
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Although TRAMO is complex and contains features which are still not always stan-
dard in statistical software packages for time series, the use of ARIMAmodels is now
well mastered. Besides the standard ARIMAmodelling stage bymaximum likelihood,
generally in an automated way, the following techniques are involved: regression with
autocorrelated errors; treatment of extreme observations using corrections for out-
liers (additive outliers, level shift, and transitory change); Easter and mobile holiday’s
effect and calendar effect adjustments; and treatment of missing observations. The
ARIMA model will be directly used by SEATS but it serves also to extend the finite
series, by computing as many forecasts and backcasts (i.e. forecasts performed back-
wards, also called backforecasts by Box and Jenkins in 1970, e.g. Box et al. 2008)
as needed. It should be stressed that these techniques are integrated in the ARIMA
modelling, although the use of a concentrated likelihood approach allows to estimate
the parameters more or less separately.

The seasonal adjustment procedure derived by SEATS on the basis of the prolonged
series and the model fitted is more difficult to explain, except the basic objective: a
decomposition of the series a little bit like in elementary seasonal decomposition
methods. However, the signal extraction procedure in SEATS is based on engineering
techniques which are generally much less mastered by economists and even statisti-
cians, with some exceptions. The underlying theory of the SEATS program is studied
in many papers but there is no complete and systematic description of its output. There
are a few tutorial papers, like Kaiser and Maravall (2001), but they are perhaps still
too complex for the interested audience. There does not appear to be a paper showing
the main concepts in a simple way. Unfortunately, even for the airline model (or an
ARIMA(0, 1, 1)(0, 1, 1)s model on logarithms of the data, with s = 12 for monthly
observations), the simplest realistic ARIMA model at the TRAMO or regARIMA
stage, things are still too complex.

The main purpose of this paper is therefore to examine the details of SEATS text
output and to explain the results in simple words and formulas. It is done on the
basis of an example, with a step-by-step description of a typical output from SEATS.
To keep the explanation as simple as possible, the example will not use a seasonal
decomposition but will use the simpler signal extraction of a trend. The example is for
a time series with a non-seasonal model so that the computations can be easily veri-
fied. Therefore the models are much simpler and fewer numbers need to be interpreted
while preserving the essential.We have designed aMicrosoft ExcelWorkbook (Online
Resource 2) which shows most of the output and a document with some instructions
(Online Resource 3). Using Microsoft Excel for doing statistics is not generally rec-
ommended (see the references in Mélard 2014), but it is the right tool to describe
simple computations. It would be difficult to use Excel to demonstrate SEATS in a
more realistic example with a seasonal component. The regARIMA or TRAMO part
of the treatment are not discussed, nor the graphical output.

We have found a monthly series called TICD (also used in Mélard 2007), the
interest rates of U.S. certificates of deposit, between December 1974 and December
1979, which is a non-seasonal series. We have obtained a non-seasonal but otherwise
very interesting decomposition, being able to compare the results for the filter weights
and most of the output with those obtained using SEATS, see Tables and Online
Resource 4.
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The principles behind SEATS are described in Sect. 2, including the admissible
decompositions and the canonical decomposition, and a procedure to implement the
derivation of the Wiener-Kolmogorov filter. In Sect. 3 the example is introduced: the
time series and the text output fromSEATS is presented in edited form in several tables.
Finally, in Sect. 4, themain results are checked on the example bymeans of aMicrosoft
Excel workbook and direct computations. In particular, the forecasts and backcasts
are obtained; the admissible and canonical decompositions with two components are
discussed; the filters are first derived using autocorrelations of two auxiliary ARMA
processes, then applied on the prolonged time series; and the characteristics of the
estimates, the revisions and the growth rates are analyzed. We will conclude in Sect.
5. Appendix 1will serve to introduce spectral analysis in a general approach.Appendix
2 will introduce the spectral analysis used in SEATS for the derivation of a canonical
decomposition.

2 Principles behind SEATS

We will explain the principles first in informal terms and using simple models, before
introducing SEATS more widely. In the next two sections we will use a simpler model
by going into details first on the basis of SEATS output on the TICD series, then on
the basis on an Excel file which describes the computations. As mentioned before,
TICD is a non-seasonal series so that the decomposition will be simpler than with a
seasonal series.We suppose we have obtained an ARIMAmodel for the original series
or a corrected version of it, using either TRAMO or regARIMA. The corrected series
will differ from the original series if the pre-treatment by TRAMO or regARIMA has
detected outliers or calendar effects. In the sequel, yt denotes the corrected obser-
vation at t . SEATS is aimed at decomposing the obtained ARIMA model in a sum
of components and extract them from the series. There can be up to 4 components:
the permanent or trend (-cycle) component,1 the transitory component, the seasonal
component, and the irregular component or error. In the majority of cases of a multi-
plicative mode of composition, SEATS works with an additive decomposition of the
data in logarithms, log(yt ). Here we will restrain ourselves to two or three components
and an additive decomposition, to simplify the presentation.

For the moment, denoting the observations, yt , t = 1, ..., T , we will consider the
decomposition

yt = Pt + St + It , (2.1)

respectively the permanent, seasonal and irregular components but on TICD we
will use another decomposition. Suppose, for example, that the series is represented
by some ARIMA(p, d, q)(P, D, Q)12 process, for example the so-called “airline”
model2 (Box et al. 2008), without the logarithmic transform however,

1 The trend-cycle can be further decomposed into trend and cycle using ARIMA models that reproduce
the Hodrick-Prescott filter, with some improvements, see Kaiser and Maravall (2005).
2 By denoting the MA polynomial (1 + θB), we use the same parametrization as Gómez and Maravall
(1994) and TRAMO-SEATS which is the opposite of Box et al. (2008) which would be (1 − θB).
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∇∇12yt = (1 + θ1B)
(
1 + Θ1B

12
)
et ,

where the et ’s represent an innovation series, i.e. a sequence of innovations, indepen-
dent random variables with mean zero and constant variance V , also called a white
noise process. Here B is the lag operator, such that Byt = yt−1,∇ = 1 − B denotes
the regular difference, such that ∇ yt = yt − yt−1, and ∇12 denotes the seasonal dif-
ference with period 12, such that ∇12yt = yt − yt−12. In this case, there is no need
for a transitory component.3

In the simplified case of two components

yt = Pt + It , (2.2)

the idea of SEATS would be to find two different ARIMA models, one for Pt and
the other for It , both based on innovation sequences that are mutually independent
from each other, extract these two series from the original series using these models,
such that the sum of the two series Pt and It is identical to the given series yt . There
is of course no reason that such a decomposition does exist, nor that it is unique. In
the special case of the airline model considered here, the answer to the first question
is negative because a third component should be added. This allows us to introduce
the concepts of admissible decomposition and of canonical decomposition. There is
an admissible decomposition if at least one decomposition does exist. If there is an
admissible decomposition, there is no reason it is unique but we will describe con-
ditions to obtain a canonical decomposition, one of those admissible decompositions
which is optimal in some sense.

To be more specific, let us now consider a quarterly series with a model described
by

∇∇4yt = θ (B) et

where θ(B) is some well specified polynomial in B, with degree q ≤ 4,4 and a
decomposition with three components like in (2.1). Note the following factorization
of the quarterly seasonal difference

∇4 = 1 − B4 = (1 − B)
(
1 + B + B2 + B3

)
= (1 − B)U3 (B) , (2.3)

where U3(B) is a polynomial of degree 3 with (complex) unit roots. The innovations
of the three components are supposed to be independent white noises, which will be
denoted ePt , eSt , eIt . We try to impose the form of the three ARIMAmodels which will
represent these three components. Logically, the ARIMA model for the permanent
component should not have a seasonal difference since it is not supposed to show

3 When s = 12, a transitory component is needed in some cases: (i) if p + d + 12(P + D) < q + 12Q;
(ii) if the case of an AR(1) polynomial (1+ φB) with a coefficient φ > −0.2; (iii) series with peaks in the
spectrum which are not associated to frequency 0 nor with the seasonal frequencies.
4 We assume q ≤ 4, because otherwise It would be a moving average of order q − 4, not a white noise.
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a seasonal behaviour but will show an ordinary difference and possibly two, noting
(2.3). On the contrary the model for the seasonal component should at least include
U3(B). Finally, the model for the irregular component should show no difference at
all and perhaps simply be a white noise. Let us consider the following models that
satisfy these requirements:

permanent component: ∇2Pt = θP (B)ePt
seasonal component: U3(B)St = θS(B)eSt
irregular component: It = eIt ,

with two MA polynomials, θP (B) and θS(B), which are still to be specified. We can
write the first two models by moving the differences to the denominator:

permanent component: Pt = θP (B)

(1−B)2
ePt

seasonal component: St = θS(B)
U3(B)

eSt ,

so that if we write the sum of the components, with explicit appearance of the models,
we obtain

yt = θ(B)

(1 − B)(1 − B4)
et = θP (B)

(1 − B)2
ePt + θS(B)

U3(B)
eSt + eIt .

Now, we can transform the right hand side by using a common denominator which
is, again, using (2.3),

(1 − B)2U3 (B) = (1 − B)2
(
1 + B + B2 + B3

)
= (1 − B)

(
1 − B4

)
= ∇∇4,

as expected given the model for the series, giving

yt = θ(B)

∇∇4
et = θP (B)(1+B+B2+B3)ePt +θS(B)(1−B)2eSt +(1−B)(1−B4)eIt

∇∇4
,

which implies the relation between the four types of innovations

θ(B)et = θP (B)
(
1+B+B2+B3

)
ePt +θS(B)(1−B)2eSt +(1−B)

(
1−B4

)
eIt .

(2.4)

To exploit this, we need to consider autocovariances at some positive lags k. We
have supposed that the polynomial θ(B) has degree q. Then the autocovariances of
θ(B)et vanish for k > q. Since the autocovariance of a sum of independent processes
is the sum of the autocovariances of these processes, it implies that the autocovariances
at lags k > q of the right hand side of (2.4) also vanish. This is a constraint on the
respective degrees qP and qS of θP (B) and θS(B), since the degrees of θP (B)(1 +
B + B2 + B3) and θS(B)(1 − B)2 are to be less or equal to q : qP + 3 ≤ q and
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qS + 2 ≤ q. Moreover, relations between the coefficients of the three polynomials
θ(B), θP (B) and θS(B) can be deduced from equality of q + 1 autocovariances at
lags 0 to q. There is no reason why the number q of coefficients of θ(B) would be
less or equal the number qP + qS of unknown coefficients of θP (B) and θS(B). This
can be seen in this special case as a condition for admissibility of a decomposition.
More precisely, a particular point of attention consists in obtaining the innovation
standard deviations of each of the components, which of course need to be strictly
positive. This will be illustrated in Sect. 3.2. SEATS does not use that approach but
rather a spectral approach which is too complex for this presentation, see however
Appendix 2.

Moreover, even if we can determine the qP + qS of unknown coefficients, there
is no reason why that solution would be unique. In other words, if there exists an
admissible decomposition, we need to determine what is called a canonical decom-
position. A detailed examination of these two problems of admissible and canonical
decompositions are outside the scope of this paper and has been solved elsewhere
(Hillmer and Tiao 1982; Maravall and Planas 1999; Fiorentini and Planas 2001). In
Sect. 3 we will merely illustrate these problems on the example of a model for TICD.
More precisely, after having determined a collection of admissible decompositions,
we will select the canonical decomposition within that collection. We will not discuss
other related problems such as the possible need to change the model for the corrected
series in order to be able to perform the decomposition; the specification of the models
for the components; the selection of the number of components; and the diagnostics
surrounding the decomposition. Some of these problems will however be mentioned
while looking at the example.

Assumingwe have obtained themodels for the components, there remains to imple-
ment the decomposition, i.e. to construct the component series. This is the problem
of signal extraction or the design of a filter. Typically, these component series’ will
be built as moving weighted averages of the observations of the corrected series duly
extended in both directions by forecasts and backcasts. We have denoted by yt the
observation at time t, t = 1, ..., n. Let �yt = yt , t = 1, ..., n, and the forecasts for
t > n, and the backcasts for t < 1. We have mentioned the Census X-11 method in
Sect. 1. Several authors (Cleveland and Tiao 1976) have investigated how the many
simple and weighted moving averages applied to the data contribute there to define a
filter. As they have shown, under some simplifying assumptions, that filter subsumes
a particular ARIMA model for the data, so that the same filter is applied whatever the
series, except for the selection of some options (e.g. the orders of the Henderson mov-
ing averages for obtaining the trend-cycle or the orders of the moving averages across
years). The principle of SEATS is to use the model for the series and the models for
the components to derive a filter with coefficients ν j . In our example with three com-
ponents Pt , St , and It , we would have three sets of filter with respective coefficients
υP
j . υ

S
j . and υ I

j . Hence, the estimates of the components would be

P̂t =
∑
j

υP
j

�yt− j ,
�St =

∑
j

υS
j

�yt− j , Ît =
∑
j

υ I
j

�yt− j , (2.5)
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where the sums extend over the prolonged part of the series in both directions. For
obtaining these filters, several approaches have been introduced in the engineering,
statistical and econometric literature: the so-calledWiener-Kolmogorov filter (Whittle
1983) for doubly infinite series, Kalman filtering or penalized least-squares directly for
finite series. There were some difficulties to use them outside the context of stationary
processes but these were solved (Bell 1984). Moreover, Gómez (1999) has shown the
equivalence of the three approaches of Wiener-Kolmogorov filter, Kalman filtering,
penalized least-squares. See also Pollock (2002).

Since Burman (1980), several algorithms have been designed to improve the end
effects. Several authors, like Maravall (1994) and McElroy (2008), have mentioned
a link with the autocovariance function of some auxiliary processes based on the
innovations of the corrected series, andon thepolynomials of theARIMAmodels of the
corrected series and of the components. These autocovariances can be computed by a
straightforward algorithm (McLeod 1975) of solving a linear system of equations or by
fast algorithms due to TunnicliffeWilson (1979) or Demeure andMullis (1989). These
simple approaches do not appear often in the literature (e.g. Gómez 1999) although
Burman (1980) already mentions developments by Tunnicliffe Wilson (1979).

To illustrate this, let us suppose some ARIMA model for the corrected series.
In what follows, we will not distinguish the differences, ordinary or seasonal, and
the autoregressive polynomials. Instead of writing an ARIMA process under the
form ∇dφ(B)yt = θ(B)et , we write ϕ(B)yt = θ(B)et , where ϕ(B) = ∇dφ(B)

is sometimes called the generalized autoregressive operator. It can include factors of
difference operators (like U3(B) above). Denote V , the variance of the innovations
et . Suppose also that the model for the permanent component, Pt , is written sim-
ilarly ϕP (B)Pt = θP (B)ePt , where the ePt ’s are the innovations of the permanent
component. Denote VP its innovation variance. Similarly, suppose that the irregular
component It is written ϕI (B)It = θI (B)eIt , where the e

I
t ’s are the innovations of the

irregular component and denote VI its innovation variance. Then, denoting simply ν j

the coefficients in (2.5) instead of υP
j , the filtered permanent component looks like

· · · + υ−i
�yt−i + · · · + υ−1

�yt−1 + υ0
�yt + υ1

�yt+1 + · · · + υi
�yt+i + · · · (2.6)

We need to determine those weighting coefficients νi of an unlimited moving average
such that it approximates the permanent component as sufficiently as possible (in a
mean square sense). By using again the lag operator B, we write the operator

υP (B, B−1)
�yt =(· · · + υ−i B

−i + · · ·+υ−1B
−1 + υ0+υ1B + · · · + υi B

i +· · · )�yt

Contrarily to φ(B), for example, which is a polynomial because only the positive
powers of B appear, the operator νP(B, B−1) includes lags B but also leads B−1. This
is the starting point of the Burman (1980) approach but since it is heavily spectral-
oriented, wewill describe it in Appendix 2. Let us denote pt the least squares estimator
of Pt , such that the covariances between pt − Pt and yt−i are zero for all i . We can
write it formally:
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pt = VP

V

⎛
⎝

θP (B)
ϕP (B)

θP (B−1)

ϕP (B−1)

θ(B)
ϕ(B)

θ(B−1)

ϕ(B−1)

⎞
⎠ yt = VP

V

(
θP (B)

ϕP (B)

ϕ(B)

θ(B)

θP (B−1)

ϕP (B−1)

ϕ(B−1)

θ(B−1)

)
yt . (2.7)

Since ϕ(B) = ϕP (B)ϕI (B), provided that ϕP (B) and ϕI (B) do not have common
roots, it appears that the coefficients νP

i of B−1 and B of the operator νP (B, B−1)

are simply the autocovariances of the auxiliary process zt defined by the following
equation

θ(B)zt = ϕI (B)θP (B)ut , (2.8)

where the ut consist of a white noise process with variance VP/V .5

An essential part of SEATS is the distinction between different estimators of com-
ponent i at time t, yit . Again assume the data are yt , t = 1, ..., n. These estimators
are conditional expectations E(yit |y1, ...yn), denoted ŷi t |n . For a large enough series
and values of t not close to 1 or n, they are the final or historical estimators, denoted
ŷi t . In practice it occurs when k = n − t is large enough. For t = n, the concurrent
estimator is obtained. When n − k < t < n, we have a preliminary estimator, and of
course for t > n, a forecast. A part of the output is devoted to the three differences,
yit − ŷi t , yit − ŷi t |n , and ŷi t − ŷi t |n , which are called, respectively, the final estima-
tion error, the preliminary estimation error and the revision error in the preliminary
estimator.

3 Example of a simple case of signal extraction

It is time to introduce the series of the interest rates of U.S. certificates of deposit,
betweenDecember 1974 andDecember 1979, hence the length of the series is T = 61,
see Fig. 1.

3.1 ARIMA modelling

Like most financial time series, it is non seasonal. A non seasonal ARIMA(0,1,1)
model6 is easily obtained by TRAMO

∇TICDt = (1 + 0.4995B)et , (3.1)

with variance V = 0.2332 and θ = 0.4995. We fall in a particular case of a theoretical
example, random walk plus white noise, used by Pierce (1979), but our treatment is
more general than in Maravall (1986), Gómez and Maravall (2001b) and others.7 Let

5 The computations in SEATS are not precisely performed that way. The filter to estimate the component
is derived in the frequency domain and does not explicitly require the models of the components. Given
that the average user looks better in the time domain, we have preferred that equivalent approach.
6 The model (3.1) differs from what was shown by Mélard (2007). Indeed, a constant was included leading
to the equation ∇TICDt = 0.0767 + (1 + 0.495B)et .
7 Their treatment is based on a random walk signal, whereas an ARIMA(0,1,1) process is used here.
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Fig. 1 The data

us skip the output of TRAMO and the summary part of the output of SEATS. We
will now comment on the edited8 output of SEATS identified by encircled numbers,
starting with Table 1.

1. This point shows information about the program (SEATS), about the series (TICD)
and the estimation method used (exact maximum likelihood). Then the data is
shown.

2. The input parameters are recalled. We have used the following input parameters
in TRAMO: LAM = 1 (to avoid a logarithmic transformation), RSA = 3 (for
automatic model identification9). Note that RSA appears as being 0 in SEATS
output.

3. The recommended specification is to use a regular difference and no seasonal
difference. The differenced series is however omitted here.

4. The first twelve autocorrelations of the differenced series are displayed. They show
a truncation pattern after lag 1, which confirms the model (3.1).

Table 2 presents the edited model and diagnostic statistics. Note that the output is
also heavily edited.

5. The final value of the (unique) estimated parameter of the ARMA model is equal
to 0.4995. A more accurate value 0.499479 shown only in TRAMO output will
be used in the computations of Sect. 4. The standard errors and Student statistics
are not shown by SEATS but by TRAMO, where the corresponding parameter is
denoted “TH1”.

6. The residuals of the fitted model are displayed. They will be used in Sect. 4.1 for
the computation of the forecasts.

8 This is to save space and to concentrate on items that are commented on. For example, the partial
autocorrelations are never shown. An unedited output is available (Online Resource 4).
9 No outlier was detected so the corrected series is identical to the original series.
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Table 1 Edited SEATS output, part 1 (see text for details)

PROGRAM SEATS+
(Based on program Seats, Víctor Gómez and Agustín Maravall ©,1996) 

Developed at the Bank of Spain by Gianluca Caporello and Agustín Maravall, 
with programming support from

Domingo Pérez Cañete and Roberto López Pavón.
Help from Christophe Planas (1992 - 1994) and Gabriele Fiorentini (1990 - 1991) is also acknowledged.

VERSION: 1.0 (Revision: 934 Build: 2014/12/18 16:25:23)

PART 1: ARIMA ESTIMATION
SERIES TITLE: TICD 
PREADJUSTED WITH TRAMO: YES 
METHOD: MAXIMUM LIKELIHOOD
NO OF OBSERVATIONS = 61
ARIMA SERIES (Corrected by TRAMO) "Original Series" FOR SEATS 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1974 8.820

1975 7.420 6.430 6.330 6.750 6.300 6.250 7.060 7.610 7.890 7.230 6.840 6.560

1976 5.570 5.680 5.870 5.520 6.110 6.310 5.900 5.700 5.580 5.300 5.190 4.760

1977 5.110 5.150 5.160 5.050 5.730 5.640 5.700 6.200 6.450 6.960 6.930 6.950

1978 7.250 7.250 7.180 7.380 7.840 8.240 8.560 8.440 8.960 9.840 11.150 11.280

1979 11.090 10.620 10.470 10.340 10.440 9.980 10.230 10.860 12.010 13.830 13.970 13.420

INPUT PARAMETERS:

LAM= 1 IMEAN= 0 RSA= 0 MQ= 12

P= 0 BP= 0 Q= 1 BQ= 0

D= 1 BD= 0 NOADMISS= 1 RMOD= 0.500

M= 36 QMAX= 60 BIAS= 1 OUT= 0

THLIM= 0.000 BTHLIM= 0.000 IQM= 24

EPSPHI= 2.000 MAXIT= 20 XL= 0.950 StochTD= 0

DIFFERENCES

NONSEASONAL DIFFERENCING D= 1

SEASONAL DIFFERENCING BD= 0

MEAN OF DIFFERENCED SERIES 0.7667D-01
MEAN SET EQUAL TO ZERO
VARIANCE OF Z SERIES = 0.5502D+01
VARIANCE OF DIFFERENCED 0.2932D+00

AUTOCORRELATIONS OF STATIONARY SERIES.Part 1.

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12

ACF 0.4198 0.0443 -0.0130 -0.0474 -0.0592 -0.1163 -0.1460 0.0303 0.1338 0.2381 0.3576 0.1963

SE 0.1291 0.1501 0.1504 0.1504 0.1506 0.1510 0.1525 0.1548 0.1549 0.1568 0.1627 0.1753

1

2

3

4

7. Some of the tests statistics on the residuals are shown, including the mean (which
is not significantly different from 0, according to the t statistic). We will use the
residual standard deviation, 0.4829, and its square 0.2332, the residual variance,
denoted V in Sect. 2.

8. Some of the additional tests are shown, such as a test for residual seasonality and
the Ljung-Box test based on the 24 first residual autocorrelations.
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Table 2 Edited SEATS output, part 2 (see text for details)

MODEL FITTED
NONSEASONAL: P= 0 D= 1 Q= 1
3 

PERIODICITY: MQ= 12
ARMA PARAMETERS

TH(1)

0.4995

SEATS RESIDUALS
EXTENDED RESIDUALS 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1974 -0.499

1975 -1.151 -0.415 0.107 0.366 -0.633 0.266 0.677 0.212 0.174 -0.747 -0.017 -0.272

... ...

1979 0.002 -0.471 0.085 -0.173 0.186 -0.553 0.526 0.367 0.967 1.337 -0.528 -0.286

TEST-STATISTICS ON EXTENDED RESIDUALS

MEAN 0.4327D-01

STANDARD DEVIATION OF MEAN = 0.6056D-01

T-VALUE 0.7146

STANDARD DEVIATION OF RESIDUALS 0.4829D+00

VARIANCE OF RESIDUALS = 0.2332D+00

NON-PARAMETRIC TEST FOR RESIDUAL SEASONALITY (FRIEDMAN) SEAS_NP = 10.63 
ASYMPTOTICALLY DISTRIBUTED AS CHI-SQUARE(11)
Critical value 99%: 24.73 
Critical value 95%: 19.68
THE LJUNG-BOX Q VALUE IS 14.50 AND IF RESIDUALS ARE RANDOM IT SHOULD BE 
DISTRIBUTED AS CHI-SQUARE (23)
THE QS VALUE IS 0.57 AND IF RESIDUALS ARE RANDOM IT SHOULD BE DISTRIBUTED AS CHI-
SQUARE(2) 

BACKWARD RESIDUALS 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1974 0.999

1975 0.803 0.375 -0.550 0.261 0.378 -0.657 -0.306 -0.489 0.419 0.482 -0.184 0.928

...

1979 0.469 0.002 0.297 -0.335 0.470 -0.019 -0.462 -0.336 -1.631 -0.379 0.479 0.143

5

6

8

7

9

9. The backward residuals of the fitted model are displayed. They are the residuals
when time is reversed, going from the future to the past. They will be used in Sect.
4.1 for the computation of the backcasts.

We will first discuss a non-seasonal but otherwise very interesting decomposition
in Sect. 3.2 using the principles in Sect. 2. Then we will compare the results for the
filter weights in Sect. 3.3 and most of the remaining output in Sects. 3.4 to 3.7. In Sect.
4 we will compare the results with those obtained using Excel.

123



SERIEs (2016) 7:53–98 65

3.2 Admissible and canonical decompositions

We consider a decomposition with permanent and irregular components

TICDt = Pt + It , (3.2)

where the two components, permanent Pt and irregular It , are to be modelled. As
explained in Sect. 2, it is requested that the models of the two components are com-
patible with the model retained for TICD. As before we denote respectively ePt
and eIt the innovations of the two processes for the permanent and irregular com-
ponents and VP et VI , their respective variances. A first suggestion would be to
take

Pt = 1

∇ ePt , It = eIt . (3.3)

Let us examine if these representations are compatible with the model for TICD.
Indeed, we can first write

Pt + It = 1

1 − B
ePt + eIt = 1

1 − B

(
ePt + (1 − B)eIt

)
,

hence ∇TICDt should correspond to ePt + eIt − eIt−1. The autocovariances of a sum of
independent random variables are the sum of the autovariances of these variables. We
will use these properties to evaluate the autocovariances of a MA(1) process. Thus,
we have:

Var
(
ePt + eIt − eIt−1

)
= VP + 2VI ,

Cov
(
ePt + eIt − eIt−1, e

P
t−1 + eIt−1 − eIt−2

)
= Cov

(
−eIt−1, e

I
t−1

)
= −VI ,

and the autocovariances with lags larger than 1 are zero. This result is thus compatible
with the process of ∇TICDt which is a MA(1) process. This allows to obtain the two
variancesVP andVI by equating the expressions of the variance and the autocovariance
of delay 1 of∇TICDt . The variance of∇TICDt equals (1+θ2)V = (1+(0.4995)2)×
0.2332 = 0.2914. The autocovariance at lag 1 equals θV = 0.4995 × 0.2332 =
0.1165. By solving the system of two equations, as we will check in Sect. 4.2, we find
VI = −0.1165 and VP = 0.2914 − 2VI = 0.2914 + 2 × 0.1165 = 0.5244. This
system of equations does not have a satisfactory solution because a variance cannot be
negative.We have to search for another admissible decomposition.We havementioned
that SEATS makes use of a spectral approach due to Burman (1980), discussed briefly
in Sect. 4.2, and more deeply in Appendix 2. We will nevertheless follow our pure
time-domain approach.

The following models for the components are also compatible with the model for
TICD:
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Pt = 1 + θP B

∇ ePt , It = eIt , (3.4)

where θP is a parameter, possibly subject to constraints. Indeed, as done in Sect. 2,
we can use ∇ as common denominator and then consider the two polynomials in the
numerators 1 + θP B and ∇ = 1 − B, both polynomials of degree 1. Therefore, the
autocovariances of the sum (1 + θP B)ePt + (1 − B)eIt vanish for lags greater than
1, like those of the right hand side of (3.1). It will be shown in Sect. 4.2 that the
canonical decomposition corresponds to the choice θP = 1. Hence the models for the
two components are

Pt = 1 + B

∇ ePt , It = eIt . (3.5)

Table 3 presents the models of the components. Again the output is edited by
omitting irrelevant items (e.g. the seasonal component).

10. The second part of the output is entitled “Derivation of the models for the com-
ponents”. Each polynomial of the model for the corrected series is first recalled.
Here, we have here only one non trivial polynomial, the regular moving average
polynomial denoted Theta: θ(B) = 1 + 0.50B. It is given with more significant
digits, like in (3.1), a few lines below.

11. The new section is about the factorization of the (generalized) autoregressive
polynomial, i.e. ϕ(B). Here it is ∇ = 1 − B and thus the factorization is trivial.
We have only given the total autoregressive polynomial subsection.

12. The model allows a decomposition which would have not been possible in some
cases.

13. The derivation of the model for each component is detailed, starting with the
trend-cycle component, referred to here as the permanent component. We see
that the numerator of the model for that component is 1 + B, confirming that
θP = 1 was retained for the canonical decomposition, see (3.5).

14. It is followed by the irregular component.
15. In our case, the seasonally adjusted component corresponds to the original series.

Logically its model should be identical to the global model.
16. Note that all variances are expressed in proportion to the global model inno-

vation variance V .10 The effective variances of the two component models are
respectively VP = 0.1311 and VI = 0.01461.

3.3 Moving average representation and Wiener-Kolmogorov filters

We have omitted the part called “ARIMA model for estimators” since there is no new
piece of information. The next subsection of the output is about the moving average
representation and the so-called ψ-weights and the Wiener-Kolmogorov filters for

10 Note a smallmistake here and in some other places (in items 23, 28, 30) in builds up to 934 of the program,
since the innovation standard deviation 0.4829 is printed instead of the innovation variance 0.2332. The
mistake will be corrected in build 935 which was not publicly available at the time of writing.
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Table 3 Edited SEATS output, part 3 (see text for details)

PART 2: DERIVATION OF THE MODELS FOR THE COMPONENTS AND ESTIMATORS
SERIES TITLE: TICD 
MODEL PARAMETERS: (0,1,1)(0,0,0)

PARAMETER VALUES: COEFFIC. OF POLYNOMIALS IN B OF THE MODEL (TRUE SIGNS)
THETA PARAMETERS

TH(0) TH(1)

1.00 0.50

NUMERATOR OF THE MODEL (TOTAL MOVING AVERAGE POLYNOMIAL) [=TH(B)]

THT(0) THT(1)

1.0000 0.4995

FACTORIZATION OF THE TOTAL AUTOREGRESSIVE POLYNOMIAL

TOTAL DENOMINATOR (TOTAL AUTOREGRESSIVE POLYNOMIAL)

PHIT(0) PHIT(1)

1.0000 -1.0000

FACTORIZATION OF THE MA POLYNOMIAL FOR THE COMPONENTS

DERIVATION OF THE COMPONENT MODELS: OK 

MODELS FOR THE COMPONENTS
TREND-CYCLE
TREND-CYCLE NUMERATOR (MOVING AVERAGE POLYNOMIAL)

THP(0) THP(1)

1.0000 1.0000

TREND-CYCLE DENOMINATOR (AUTOREGRESSIVE POLYNOMIAL)

PHIPT(0) PHIPT(1)

1.0000 -1.0000

INNOVATION VARIANCE (*) 0.562109

IRREGULAR
VARIANCE (*) 0.062630

SEASONALLY ADJUSTED
SEASONALLY ADJUSTED NUMERATOR (MOVING AVERAGE POLYNOMIAL)

THN(0) THN(1)

1.0000 0.4995

SEASONALLY ADJUSTED DENOMINATOR (AUTOREGRESSIVE POLYNOMIAL

PHINT(0) PHINT(1)

1.0000 -1.0000

INNOVATION VARIANCE (*) 1.000000

(*) IN UNITS OF VAR(A)
To obtain the innovation variances in the original units, multiply by VAR(a)= 0.4829 0.2332

10

11

12

13

14

15

16

each of the components, shown in Table 4; the contribution of original series and of
its innovations to the estimation of the components (omitted); the characteristics of
the theoretical components, their estimators and their estimates.

17. An explanation that will be commented at the end of Sect. 4.4.
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Table 4 Edited SEATS output, part 4 (see text for details)

MOVING AVERAGE REPRESENTATION OF ESTIMATORS (NONSTATIONARY)
Negative lags represent future values; positive lags represent past values. 
Lag 0 denotes the last observed period.
The last column (the sum of the Psi-Weights excluding PSIEA) should be zero for negative lags, 1 for 
lag=0, and equal to the Box-Jenkins Psi-Weights for positive lags.

Psi-Weights Table

LAG PSIEP PSIES PSIEC PSIEA PSIUE PSIX

-10 -0.0002 0.0000 0.0000 0.0000 0.0002 0.0000

-9 0.0004 0.0000 0.0000 0.0000 -0.0004 0.0000

-8 -0.0007 0.0000 0.0000 0.0000 0.0007 0.0000

-7 0.0015 0.0000 0.0000 0.0000 -0.0015 0.0000

-6 -0.0029 0.0000 0.0000 0.0000 0.0029 0.0000

-5 0.0058 0.0000 0.0000 0.0000 -0.0058 0.0000

-4 -0.0117 0.0000 0.0000 0.0000 0.0117 0.0000

-3 0.0234 0.0000 0.0000 0.0000 -0.0234 0.0000

-2 -0.0469 0.0000 0.0000 0.0000 0.0469 0.0000

-1 0.0939 0.0000 0.0000 0.0000 -0.0939 0.0000

0 0.9374 0.0000 0.0000 1.0000 0.0626 1.0000

1 1.4995 0.0000 0.0000 1.4995 0.0000 1.4995

2 1.4995 0.0000 0.0000 1.4995 0.0000 1.4995

DERIVATION OF THE FILTERS: OK 

WIENER-KOLMOGOROV FILTERS (ONE SIDE)

Filters

LAG TREND-CYCLE SA SERIES SEASONAL TRANSITORY IRREGULAR

0 0.7497 1.0000 0.0000 0.0000 0.2503

1 0.1876 0.0000 0.0000 0.0000 -0.1876

2 -0.0937 0.0000 0.0000 0.0000 0.0937

3 0.0468 0.0000 0.0000 0.0000 -0.0468

4 -0.0234 0.0000 0.0000 0.0000 0.0234

5 0.0117 0.0000 0.0000 0.0000 -0.0117

6 -0.0058 0.0000 0.0000 0.0000 0.0058

7 0.0029 0.0000 0.0000 0.0000 -0.0029

8 -0.0015 0.0000 0.0000 0.0000 0.0015

9 0.0007 0.0000 0.0000 0.0000 -0.0007

10 -0.0004 0.0000 0.0000 0.0000 0.0004

11 0.0002 0.0000 0.0000 0.0000 -0.0002

12 -0.0001 0.0000 0.0000 0.0000 0.0001

17

20

18

19

18. The infinite moving average representation of the component estimators, also
called ψ-weights, are given here in terms of the innovations (here only for lags
−10 to 2, the remaining ones being uninformative). We will give more details in
Sect. 4.4.
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19. It is first confirmed that the filters could be derived.
20. The weights of the Wiener-Kolmogorov filters for each of the components are

given but only for one side since they are symmetric, and only the lags 0 to 12,
the remaining entries being 0 to 4 decimal places. This does not mean that they
are negligible, as will be seen in Sect. 4.4.

3.4 Distinction between theoretical components, their estimators and estimates

Still in the second section of the output, we have (see Table 5).

21. The contribution of the original series and of its innovations to the estimator
of the components for the present period. In the column “observation”, it is the
weight of the Wiener-Kolmogorov filters (for lags 0 and 1) given in item 18. In
the column “innovation”, it is the ψ-weight (for lags 0 and −1) given in item 20.

22. In a subsection entitled “Distribution of component, theoretical estimator and
empirical estimate”, the autocorrelation characteristics of the theoretical trend-
cycle component, its estimator and its estimate, after transformation for achieving
stationarity, are given. These results will be discussed and checked in Sect. 4.5.
We have omitted the seasonally adjusted component which has no meaning here.

23. It is followed by the autocorrelation characteristics of the theoretical irregular
component, its estimator and its estimate. These results will be commented in
Sect. 4.5. The error on V is repeated here.

We have also (see Table 6)

24. The cross-correlations, without any lag, between the estimators and the estimates
of the two components are given here. See Sect. 4.5.

25. Tests of comparisons between the estimators and the estimates according to sev-
eral criteria: the variance, autocorrelation of order 1 and 12, and cross-correlation.
See Maravall (2003).

26. Under the heading “Weights”, the weights for the asymmetric filter for the trend
given a semi-infinite realization are given. They are identical to the ψ-weights
for the trend, already shown in item 18.

Several pieces of output have been deleted (phase diagram, seasonal diagnostics,
the conclusions of the spectral diagnostics, the residual stochastic seasonality spectral
evidence, and the trading day effect).

3.5 Error analysis

This is the third part from the output, see Table 7 for the beginning.

27. It is started with the final estimation error, the only one that counts for an obser-
vation near the middle of the series, and the revision error, which is due on the
arrival of a new observation.

28. Under the heading “Total estimation error (concurrent estimator)” the output
contains the sum of the two preceding errors. The variance is thus the sum of the
two variances. For the autocorrelations, see Sect. 4.6.
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Table 5 Edited SEATS output, part 5 (see text for details)

CONTRIBUTION OF ORIGINAL SERIES AND OF ITS INNOVATIONS TO THE ESTIMATOR OF THE 
COMPONENTS FOR THE PRESENT PERIOD.

COMPONENT
CONTRIBUTION OF 

TREND-CYCLE SEASONAL COMPONENT TRANS.+IRREGULAR

OBSERVATION INNOVATION OBSERVATION INNOVATION OBSERVATION INNOVATION

LAST PERIOD 0.750 0.937 0.000 0.000 0.250 0.063

NEXT PERIOD 0.188 0.094 0.000 0.000 -0.188 -0.094

1 YEAR AHEAD 0.000 0.000 0.000 0.000 0.000 0.000

2 YEAR AHEAD 0.000 0.000 0.000 0.000 0.000 0.000

DISTRIBUTION OF COMPONENT, THEORETICAL ESTIMATOR, AND EMPIRICAL 
ESTIMATE.
AUTOCORRELATION FUNCTION OF STATIONARY TRANSFORMATION OF COMPONENTS AND 
THEIR ESTIMATORS.

ACF OF TREND-CYCLE

LAG COMPONENT ESTIMATOR ESTIMATE SE

1 0.500 0.550 0.539 0.086

2 0.000 0.025 0.023 0.162

3 0.000 -0.013 -0.051 0.164

4 0.000 0.006 -0.067 0.164

5 0.000 -0.003 -0.105 0.164

...

11 0.000 0.000 0.364 0.164

12 0.000 0.000 0.208 0.164

VAR.(*) 1.124 1.054 1.045 0.244

ACF OF IRREGULAR

LAG COMPONENT ESTIMATOR ESTIMATE SE

1 0.000 -0.750 -0.765 0.064

2 0.000 0.374 0.421 0.150

3 0.000 -0.187 -0.229 0.185

4 0.000 0.093 0.113 0.197

5 0.000 -0.047 -0.084 0.201

...

11 0.000 -0.001 0.128 0.202

12 0.000 0.000 -0.080 0.202

VAR.(*) 0.063 0.016 0.015 0.004

(*) IN UNITS OF VAR(A)
To obtain the innovation variances in the original units, multiply by VAR(a)= 0.4829 0.2332

21

22

23

29. The item called “Variance of the revision error” contains the variance of the
revision error after additional time has passed.

30. Under the heading “Percentage reduction in the standard error of the revision”,
the output contains the percentage of reduction of the variance of the revision
error after additional time has passed.
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Table 6 Edited SEATS output, part 6 (see text for details)

CROSSCORRELATION BETWEEN STATIONARY TRANSFORMATION OF ESTIMATORS

ESTIMATOR ESTIMATE SE

TREND-CYCLE/IRREGULAR 0.274 0.279 0.049

For all pairs of components, the crosscorrelation between the estimators and that between the estimates 
should be broadly in agreement.

TREND-CYCLE and IRREGULAR component estimators are mildly correlated.  

SECOND ORDER MOMENTS OF THE (STATIONARY) COMPONENTS OVER / UNDER 
ESTIMATION TESTS
For all components it should happen that:
Var(Component) > Var(Estimator)
Var(Estimator) close to Var(Estimate)
If,for a component, Var(Estimator) >> Var(Estimate), there is UNDERESTIMATION of the component.
If Var(Estimator) << Var(Estimate), the component has been OVERESTIMATED. 

1. VARIANCE

t-test of difference: Estimator-Estimate. (Approx. 99% Critical Value) 

TREND-CYCLE OK ( t = -0.04 )

IRREGULAR OK ( t = -0.02 )

2. AUTOCORRELATION

t-values of difference: ACF of estimator - ACF of estimate (approx. 99% Critical Value)  

FIRST ORDER
AUTOCORRELATION

SEASONAL ORDER
AUTOCORRELATION

TREND-CYCLE OK ( t = -0.13 ) OK ( t = 1.27 )

IRREGULAR OK ( t = -0.25 ) OK ( t = -0.39 )

Excessive positive first order AC of Trend-cycle estimate may indicate over-smoothing of Trend-cycle.

3. CROSSCORRELATION
t-values of difference: CC of estimator - CC of estimate (Approx. 99% Critical Value) 

IRREGULAR

TREND-CYCLE OK ( t = 0.10 )

WEIGHTS
WEIGHTS FOR ASYMMETRIC TREND CONCURRENT ESTIMATOR FILTER
(semi-infinite realization)

exp(B) WEIGHTS exp(B) WEIGHTS exp(B) WEIGHTS

0 0.937370 1 0.093913 2 -0.046907

3 0.023429 4 -0.011702 5 0.005845

6 -0.002920 7 0.001458 8 -0.000728

...

24

25

26

The contents will be checked in Sect. 4.6. The following is in Table 8:

31. The item entitled “Decomposition of the series: recent estimates”, contains the
values of the components (which are also repeated further) but also their standard
deviations.
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Table 7 Edited SEATS output, part 7 (see text for details)

PART 3: ERROR ANALYSIS

ACF (LAG)
FINAL ESTIMATION ERROR REVISION IN CONCURRENT ESTIMATOR

TREND-CYCLE SA SERIES TREND-CYCLE SA SERIES

1 0.250 0.000 -0.499 0.000

2 -0.125 0.000 0.249 0.000

3 0.062 0.000 -0.125 0.000

4 -0.031 0.000 0.062 0.000

...

12 0.000 0.000 0.000 0.000

VAR.(*) 0.047 0.000 0.012 0.000

ACF (LAG) TOTAL ESTIMATION ERROR (CONCURRENT ESTIMATOR)
TREND-CYCLE SA SERIES

1 0.100 0.000
2 -0.050 0.000
3 0.025 0.000
...

VAR.(*) 0.059 0.000
(*) IN UNITS OF VAR(A)
To obtain the innovation variances in the original units, multiply by VAR(a)= 0.4829 0.2332

ADDITIONAL PERIODS
VARIANCE OF THE REVISION ERROR (*)

TREND-CYCLE SA SERIES

0 0.1175E-01 0.000 

12 0.6831E-09 0.000 

...

PERCENTAGE REDUCTION IN THE STANDARD ERROR OF THE REVISION AFTER ADDITIONAL 
YEARS (COMPARISON WITH CONCURRENT ESTIMATORS)

TREND-CYCLE SA SERIES

AFTER 1 YEAR 99.98 0.000 

AFTER 2 YEAR 100.0 0.000 

(*) IN UNITS OF VAR(A)
To obtain the innovation variances in the original units, multiply by VAR(a)= 0.4829 0.2332

27

28

29

30

32. Under the heading “Decomposition of the series: forecasts”, the output contains
the forecasts that can be made for each component with their standard deviations.

Details are checked in Sect. 4.1. We have omitted the “Sample means” item.

3.6 Estimates of the components

This is the fourth part from the output, see Table 9. The original series is omitted as
well as the standard error of the trend-cycle. There remains:
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Table 8 Edited SEATS output, part 8 (see text for details)

ADDITIVE DECOMPOSITION OF THE SERIES: RECENT ESTIMATES

PERIOD SERIES 

TREND-CYCLE SA SERIES

ESTIMATE 
STANDARD ERROR

ESTIMATE 
STANDARD ERROR

TOTAL OF REVISION TOTAL OF REVISION

-24 6.950 6.966 0.1046 0.3043E-08 6.950 0.000 0.000 

-23 7.250 7.227 0.1046 0.6093E-08 7.250 0.000 0.000 

...

-2 13.83 13.71 0.1055 0.1306E-01 13.83 0.000 0.000 

-1 13.97 13.98 0.1079 0.2615E-01 13.97 0.000 0.000 

0 13.42 13.44 0.1170 0.5235E-01 13.42 0.000 0.000 

STANDARD ERROR OF
FINAL ESTIMATOR 0.1046 0.000 

FORECAST OF THE STOCHASTIC SERIES AND COMPONENTS

PERIOD 

SERIES TREND-CYCLE SASERIES

FORECAST S.E. FORECAST
STANDARD ERROR

FORECAST
STANDARD ERROR

TOTAL OF REVISION TOTAL OF REVISION

1 13.28 0.4829 13.28 0.4675 0.4557 13.28 0.4829 0.4829 

2 13.28 0.8704 13.28 0.8619 0.8556 13.28 0.8704 0.8704 

3 13.28 1.132 13.28 1.126 1.121 13.28 1.132 1.132 

4 13.28 1.344 13.28 1.339 1.334 13.28 1.344 1.344 

...

31

32

33. The trend-cycle component estimates,
34. The irregular component estimates.

These series will be checked in Sect. 4.4.

3.7 Rates of growth

The fifth part of the output, entitled “Rates of growth” provides here growths since
the model is applied on the data, not on their logarithms, see Tables 9, 10 and 11.

35. Period-to-period growth estimation error variance for the concurrent estimator,
36. Period-to-period growth for the most recent periods for the original series and the

trend (with standard error of revision for the latter),
37. Accumulated growth during the present year for the original series and the trend

(with standard error of revision for the latter),
38. Annual growth estimation error variance for the concurrent estimator,
39. Annual growth for the most recent periods for the original series and the trend

(with standard error of revision for the latter),
40. Annual centred growth with 6 observed periods and 6 forecasts,
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Table 9 Edited SEATS output, part 9 (see text for details)

PART 4: ESTIMATES OF THE COMPONENTS (LEVELS)

TREND-CYCLE 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1974 8.757

1975 7.464 6.435 6.385 6.671 6.332 6.299 7.014 7.645 7.816 7.263 6.865 6.478

1976 5.661 5.672 5.810 5.611 6.060 6.295 5.911 5.714 5.545 5.354 5.111 4.863

1977 5.030 5.210 5.087 5.157 5.634 5.676 5.725 6.156 6.503 6.905 6.948 6.966

1978 7.227 7.255 7.183 7.402 7.816 8.272 8.494 8.517 8.913 9.927 11.035 11.334

1979 11.031 10.679 10.422 10.403 10.358 10.052 10.222 10.856 12.093 13.710 13.976 13.438

IRREGULAR COMPONENT 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1974 0.063

1975 -0.044 -0.005 -0.055 0.079 -0.032 -0.049 0.046 -0.035 0.074 -0.033 -0.025 0.082

1976 -0.091 0.008 0.060 -0.091 0.050 0.015 -0.011 -0.014 0.035 -0.054 0.079 -0.103

1977 0.080 -0.060 0.073 -0.107 0.096 -0.036 -0.025 0.044 -0.053 0.055 -0.018 -0.016

1978 0.023 -0.005 -0.003 -0.022 0.024 -0.032 0.066 -0.077 0.047 -0.087 0.115 -0.054

1979 0.059 -0.059 0.048 -0.063 0.082 -0.072 0.008 0.004 -0.083 0.120 -0.006 -0.018

PART 5: RATES OF GROWTH

A. PERIOD-TO-PERIOD RATE-OF-GROWTH OF THE SERIES. T(1,1)

TABLE 5.1 RATE T(1,1) : ESTIMATION ERROR VARIANCE 

CONCURRENT ESTIMATOR TREND-CYCLE SA SERIES

FINAL ESTIMATION ERROR 0.016 0.000

REVISION ERROR 0.006 0.000

TOTAL ESTIMATION ERROR 0.023 0.000

(SD) ( 0.150) ( 0.000)

33

34

35

41. Growth forecasts for the original series and the trend, with standard error of
revision.

These results will be checked in Sect. 4.7.

4 Verification of the results in the example

It is clear that TRAMO-SEATS is a complex piece of software. If the basic theory is
given in a few papers (Gómez and Maravall 1994, 2001a, b, and others), and can be
checked empirically, some of the more sophisticated features like the selection of the
canonical decomposition, the derivation of the Wiener-Kolmogorov filters, revisions,
and the various diagnostics are more difficult to grasp. We will therefore describe
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Table 10 Edited SEATS output, part 10 (see text for details)

TABLE 5.2
PERIOD-TO-PERIOD GROWTH T(1,1) FOR THE MOST RECENT PERIODS With associated SER

DATE ORIGINAL
SERIES 

TREND-CYCLE SA SERIES

ESTIMATE SER ESTIMATE SER

DEC-1979 -0.550 -0.538 0.785E-01 -0.550 0.00 

NOV-1979 0.140 0.266 0.392E-01 0.140 0.00 

OCT-1979 1.82 1.62 0.196E-01 1.82 0.00 

SEP-1979 1.15 1.24 0.978E-02 1.15 0.00 

AUG-1979 0.630 0.634 0.489E-02 0.630 0.00 

JUL-1979 0.250 0.170 0.244E-02 0.250 0.00 

...

DEC-1978 0.130 0.299 0.189E-04 0.130 0.00 

...

JAN-1977 0.350 0.167 0.00 0.350 0.00 

B. ACCUMULATED RATE OF GROWTH DURING THE PRESENT YEAR.

TABLE 5.3 ACCUMULATED GROWTH DURING THE PRESENT YEAR

DEC-1979 ESTIMATE SER

ORIGINAL SERIES 2.14 -

TREND-CYCLE 2.10 0.523E-01

SA SERIES 2.14 0.00 

C. ANNUAL GROWTH T(1,MQ)

TABLE 5.4 ESTIMATION ERROR VARIANCE:
Annual growth T(1,MQ), not-centered and dated at last observation. (X 1.0D1)

CONCURRENT ESTIMATOR TREND-CYCLE SA SERIES

FINAL ESTIMATION ERROR 0.219 0.000

REVISION ERROR 0.027 0.000

TOTAL ESTIMATION ERROR 0.246 0.000

(SD x 1.0D0) ( 0.157) ( 0.000)

36

37

38

their use on the same example as in Sect. 3, but this time with the help of an Excel
file (Online Resource 2).11 These results can then be compared with the edited output

11 It is based on the file CH13EX06.xls on the CD-Rom of Mélard (2007) except that there a model with
a constant was used, see footnote1. A document (Online Resource 3) providing some instructions is also
given but these instructions do not reflect the slight changes due to the absence of the constant; makes use of
the Box-Jenkins parameterization for AR and MA coefficients; and comments a former version of SEATS.
It covers also some other aspects, such as generating artificial series from the models for the trend-cycle
and the irregular and showing that the autocorrelations of their sum behave like the series TICD.
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Table 11 Edited SEATS output, part 11 (see text for details)

TABLE 5.5 INTERANNUAL RATE OF GROWTH:
Growth T(1,MQ), not-centered and dated at last observation, FOR THE MOST RECENT PERIODS.
This rate measures the growth with respect to 1-year ago. With standard errors.

DATE ORIGINAL
SERIES

TREND-CYCLE SA SERIES

ESTIMATE SER ESTIMATE SER

DEC-1979 2.14 2.10 0.523E-01 2.14 0.00 

NOV-1979 2.82 2.94 0.261E-01 2.82 0.00 

OCT-1979 3.99 3.78 0.131E-01 3.99 0.00 

SEP-1979 3.05 3.18 0.652E-02 3.05 0.00 

AUG-1979 2.42 2.34 0.326E-02 2.42 0.00 

JUL-1979 1.67 1.73 0.163E-02 1.67 0.00 

...

DEC-1978 4.33 4.37 0.126E-04 4.33 0.00 

...

DEC-1977 2.19 2.10 0.00 2.19 0.00 

•

TABLE 5.6 PRESENT RATE OF ANNUAL GROWTH:
Rate T(1,MQ), centered and dated. Annual rate computed as the rate of growth over the last (MQ/2) observed 
periods and the next (MQ/2) forecasts at last observed period. With associated standard errors.

DATE CENTERED RATE OF
ANNUAL GROWTH SER TSE

ORIGINAL SERIES 
DEC-1979 3.30 1.69 1.69 

NOV-1979 ( 2.84 ) ( 1.53 ) ( 1.53 )

TREND-CYCLE
DEC-1979 3.23 1.68 1.69 

NOV-1979 ( 2.92 ) ( 1.52 ) ( 1.53 )

SA SERIES
DEC-1979 3.30 1.69 1.69 

NOV-1979 ( 2.84 ) ( 1.53 ) ( 1.53 )

D. FORECAST

TABLE 5.7 RATES OF GROWTH FORECASTS 

FORECAST ORIGIN :
DEC-1979 ORIGINAL SERIES TREND-CYCLE SA SERIES

ONE-PERIOD-AHEAD FORECAST
TO PERIOD RATE T(1,1) -0.14 (SER= 0.48 )  -0.16 (SER= 0.41 )  -0.14 (SER= 0.48 ) 

FORECAST OF ANNUAL RATE
OF GROWTH OVER THE NEXT
12 PERIODS (one year horizon)

-0.14 (SER= 2.4 ) -0.16 (SER= 2.4 ) -0.14 (SER= 2.4 )

FORECAST OF ANNUAL RATE
OF GROWTH FOR THE PRESENT YEAR

(December over December)
2.1 (SER= 0.0 )  2.1 (SER= 0.52E-01)  2.1 (SER= 0.0 ) 

39

41

40

from the program in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or with the full output (Online
Resource 4). At some places simple algebraic computations are also used.

4.1 Forecasts and backcasts of the series

Before looking at decompositions, let us look at the forecasts and backcasts of the
TICD series that will be needed. In the Excel file, worksheet Main, we have used the
example based on the model (3.1) for TICD.
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Let us first show how to evaluate the forecasts for the futuremonths, with December
1979 as forecast origin. (3.1) implies that TICDt = TICDt−1 + et + 0.4995et−1,
hence the forecast at time T + 1 equals: TICD∗

T+1 = TICDT + 0.4995eT . The next
forecasts are TICD∗

T+2 = TICD∗
T+1,TICD

∗
T+3 = TICD∗

T+2, and so on. The residuals
are obtained starting from the same model ∇TICDt = et + 0.4995et−1, by writing
et = ∇TICDt−0.4995et−1 where the cellV49 contains themoving average coefficient
0.4995. The data of November 1979 and December 1979 are equal to 13.97 and 13.42,
respectively, and the residual in December 1979 equals −0.2863 (cell U113 which
corresponds to the last number of item 6 in Table 2). Then TICD∗

T+1 = 13.42 +
0.4995 × (−0.2863) = 13.28, hence TICD∗

T+2 = TICD∗
T+3 = 13.28, and so on,

see cells V114 to V131. This is shown in item 32, column “Series Forecast”, in Table
8. The computation of the forecast standard errors for the series is classic using the
so-called ψ weights of the pure moving average representation of the process. Given
that these weights areψ j = 1+ θ , these standard errors for horizons 1, 2 and 3 are the
square roots of V , V (1+ (1+θ)2), V (1+2(1+θ)2), and so on. This gives the values
shown in the range X114 to X125 of the worksheet and in column “Series S.E.” of
item 32 in Table 8. Note that the derivation of the other columns of item 32 is differed
to Sect. 4.6.

Similarly, the backcasts are obtained in reversed time, with December 1974 as
forecast origin. (3.1) is an invertible model which implies that we have the following
model in reverse time: TICDt − TICDt+1 = ut + 0.4995ut+1, where we will denote
ut the innovations in reverse time. This implies that TICDt = TICDt+1 + ut +
0.4995ut+1, thus the forecast at time 0 equals: TICD∗

0 = TICD1 + 0.4995u1. The
preceding forecasts are TICD∗−2 = TICD∗−1 = TICD∗

0, and so on. The residuals in
reverse time are obtained from TICDt − TICDt+1 = ut + 0.4995ut+1, by writing
ut = TICDt − TICDt+1 − 0.4995ut+1, where cell V49 contains the moving average
coefficient 0.4995. The data of December 1974 and January 1975 are equal to 8.82
and 7.42, respectively, and the residual in December 1974 is equal to 0.9990 (cell
Y53 which corresponds to the first number of item 9 in Table 2). Then TICD∗

0 =
8.82 + 0.4995 × (0.9990) = 9.32, hence TICD∗−1 = TICD∗−2 = 9.32, and so on,
see cells AA41 to AA52. The whole series of backward residuals is shown in SEATS
output, see Table 2, item 9.

4.2 Admissible and canonical decompositions

In Sect. 3.2, we have seen a general form for the difference of the permanent or trend
component given by∇Pt = (1+θP B)ePt .We have obtained a system of two equations
in the variances of the innovations of the two components VP and VI . This system
can be solved for any value of θP between −1 and 1. In the Excel file, worksheet
Second, we have used the context of the example based on the TICD model. We have
entered in cells B9 and B10 the value of θ and V , respectively. In cells A15 to A35,
we have placed potential values of θP between −1 and 1. In the next two columns
formulas give the solutions of VP and VI . in function of θP . The resulting table is
copied in Table 12. We can see that not only θP = 0 is not admissible, because one of
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Table 12 Admissible and
non-admissible decompositions

θP VP VI

1.0 0.1311 0.0146

0.9 0.1452 0.0142

0.8 0.1618 0.0130

0.7 0.1814 0.0105

0.6 0.2048 0.0064

0.5 0.2330 0.0000

0.4 0.2675 −0.0095

0.3 0.3103 −0.0234

0.2 0.3641 −0.0437

0.1 0.4333 −0.0731

0.0 0.5244 −0.1165

−0.1 0.6473 −0.1812

−0.2 0.8193 −0.2803

−0.3 1.0701 −0.4375

−0.4 1.4565 −0.6991

−0.5 2.0974 −1.1652

−0.6 3.2772 −2.0828

the two variances is negative, but also that only values of θP between 0.6 and 1 lead to
admissible decompositions. There remains to justify why the canonical decomposition
should be the one corresponding to θP = 1.

4.3 The canonical decomposition

To justify the selection of a canonical decomposition among the admissible decom-
positions, we need to define a criterion. Several criteria can be developed but we use
two of them.

We saw that an admissible decomposition is generally not unique. It is here that the
interpretation of the models for the components intervenes. In the example, the two
components are the permanent component and the irregular component. We should
impose that the permanent component is as smooth as possible, thus free from irregu-
larities. Thismeans thatwemust assign all the irregularities to the irregular component.
In statistical terms, we require that the variance of the irregular component be maxi-
mum. The criterion we will use is thus to maximize that variance VI . By inspecting
Table 12, we see that the variance of the irregular component depend on θP , and
that the maximum is reached for θP = 1. This is precisely the decomposition that
we have observed in the output of SEATS in Table 3. Note that we have then the
identity

1 + θ2

2
= VP

V
+ VI

V
. (4.1)
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Fig. 2 Pseudo-spectrum of the model for TICD and its two components

Another approach is provided by spectral analysis that we recall in Appendix 1 (see
Priestley 1981 for alternative approaches). There we define the spectrum (or spectral
density) of a stationary process and the pseudo-spectrum of a non-stationary process.
The spectrum of a stationary process describes the distribution of the variance of
the process according to the frequencies and is therefore everywhere non-negative.
Note that the generalized spectrum of a non-stationary process cannot be interpreted
in the same manner because the variance does not exist. The spectrum of a sum
of independent random processes is equal to the sum of the spectra. We can thus
break up the pseudo-spectrum of the process TICD into the sum of the spectra of
the permanent and irregular components. In the Excel file, worksheet Second, we can
check on the example, by changing the MA coefficient in cell G12 so that the canon-
ical decomposition corresponds to the case where the minimum of the spectrum of
the permanent or trend component is equal to 0, see Fig. 2. This is for θP = 1, of
course. The different columns in the range E11 to O160 contain the Excel formulas
for the computations of the spectrum based on the model (3.1), i.e. (A1.5) in Appen-
dix 1. Note that these computations use complex numbers instead of real numbers
so that even additions need a specific function IMSUM (in the English version of
Excel) instead of the usual + operator. The other functions needed (again in the Eng-
lish version) are IMPRODUCT for a product, IMPOWER for a power, and IMABS
for a modulus. The spectra for the trend and for the irregular models are similarly
shown in the ranges Q11 to Y160 and AA11 to AA160, respectively. The results
for the three spectral densities are then shown in a plot contained in the sheet Spec-
trum. It is for the value θP = 1 that the spectrum of the irregular component is the
highest. It cannot increase any further because it would exceed the spectrum of the
sum.

4.4 Moving average representation and Wiener-Kolmogorov filters

It is easier to present the derivation of the components using the Wiener-Kolmogorov
filters before discussing the moving average representation.
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In our example of extraction of the permanent component, the theory in Sect. 2 and
(2.7) yields that the estimator pt of Pt can be expressed by pt = νP (B, B−1)yt or

pt = VP

V

⎛
⎝

(1+B)
(1−B)

(1+B−1)

(1−B−1)

(1+0.4995B)
(1−B)

(1+0.4995B−1)
(1−B)

⎞
⎠ yt = 0.1311

0.2332

(1+B)(1+B−1)

(1+0.4995B)(1+0.4995B−1)
yt ,

(4.2)

after cancellation of 1 − B, and that the auxiliary process (2.8) is a stationary
ARMA(1, 1) process defined by

(1 + 0.4995B) zt = (1 + B) ut , (4.3)

where the ut consist of awhite noise processwith variance VP/V = 0.1311/0.2332 =
0.5622, contained in cell D47 of worksheet Main. To compute the weights of the
Wiener-Kolmogorov filter, we need to compute the autocovariances of that auxiliary
process. We have used that for an ARMA(1, 1) process defined by the equation (1 +
φB)zt = (1+θB)ut , we have (e.g. Box et al. 2008, Section 3.4.3) the autocovariances
γk are given by:

γ0 = (1 − 2φθ + θ2)

1 − φ2 σ 2, γ1 = θσ 2 − φγ0 (4.4)

and γ2 = −φγ1, γ3 = −φγ2, . . . The formulas are applied in worksheet Main in cells
AA8 to AA32. It will be useful for the sequel to provide the specific formulas for the
Wiener-Kolmogorov weights νP

j of B−1 and B of the operator νP (B, B−1). They are
obtained by replacing in (4.4) θ by 1 and φ by θ :

υP
0 = 2

1 + θ

VP

V
, υ P

j = (−θ) j−1 1 − θ

1 + θ

VP

V
, j = 1, 2, ... (4.5)

The extraction of the irregular component can be done in a similar way. Thus, in
our example, its estimator it of It can be expressed by it = ν I (B, B−1)yt and is equal
to

it = VI

V

(
1

1+0.4995B
1−B

1+0.4995B−1

1−B

)
yt = 0.01460

0.2332

(1 − B)(1 − B−1)

(1 + 0.4995B)(1 + 0.4995B−1)
yt

(4.6)
and the auxiliary process is a stationary ARMA(1,1) process defined by

(1 + 0.4995B)zt = (1 − B)vt ,

where the vt consists of a white noise process with variance VI /V = 0.01461/0.2332
= 0.06263, contained in cell E47 of worksheet Main. Note that only the sign of the
MA coefficient differs from the case of the permanent component. The formulas are
applied in worksheet Main in cells AB8 to AB32. The two sets of weights of the
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Wiener-Kolmogorov filters are shown in Fig. 3 (from the worksheets WTS_TRD and
WTS_IRR). Note also that νP (B, B−1) + ν I (B, B−1) = 1.

We can now use the two filters to extract the components. To see the calculation of
the components for the permanent and for the irregular component, we have applied
the weighted moving averages in Fig. 3 to the series prolonged with forecasts and
backcasts. This is done in the Excel file, worksheet Main in the range AB53 to AB113
for the permanent component and in the range AC53 to AC113 for the irregular com-
ponent. To achieve the accuracy for the components shown in Table 9 of the SEATS
output, we have made a correction to take care of a few more weights. Nevertheless,
there are some differences for the irregular component.12

Now we are able to examine the moving averages representations and in particular
the ψ-weights that precede the filters in the output. They are obtained by replacing
the observations in (4.2) and (4.6) above in function of the innovations. Since future
observations are used as well as past observations, the expressions make use of past
but also of future innovations. Therefore we have for the estimator of the permanent
component

pt = VP

V

(1+B)(1+B−1)

(1+θB)(1+θB−1)

(1 + θB)

(1 − B)
et =0.5622 × (1+B)(1+B−1)

(1+0.4995B−1)(1 − B)
et

(4.7)

and for the irregular component

it = VI

V

(1 − B)(1 − B−1)

(1 + θB)(1 + θB−1)

(1 + θB−1)

(1 − B)
et = 0.06263 × (1 − B−1)

(1 + 0.4995B−1)
et .

(4.8)

After some algebraic calculations, we obtain for (1− B) times the fraction in (4.7)

(2 − θ) + B + (1 − θ)2 B−1 − θ (1 − θ)2 B−2 + θ2 (1 − θ)2 B−3 − · · · (4.9)

These coefficients for θ = 0.4995 are computed in worksheet Main, in the range AY1
to BQ20. Multiplying (4.9) by (1 − B)−1 gives

3 − θ + (1 − θ)2

1 + θ
+

(
2 − θ + (1 − θ)2

1 + θ

)
(B + B2 + B3 + · · · )

+ (1 − θ)2

1 + θ
(B−1 + θB−2 + θ2B−3 + · · · ),

12 Note that the sum of the two component series differs from the original series by 0.000004 on average,
see cell BG116, showing only 5 correct significant digits. When the MA(1) parameter estimate 0.4995 is
used, thus with four decimal places, the forecasts and backcasts are not very accurate, and the difference
becomes 0.0002 on average, showing only 2 to 3 correct significant digits. To avoid numerical instability,
Pollock (2006) recommends to compute the irregular component using the filter and to deduce the permanent
component.
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hence 1.667 + (2.667B + 2.667B2 + 2.667B3 + · · ·) + (0.167B−1 − 0.083B−2 +
0.042B−3−· · ·), see rangeBS50 toBW60, and bymultiplication by VP/V = 0.5622:

pt =
{
0.937 +

(
1.499B + 1.499B2 + · · ·

)
+

(
0.094B−1 − 0.047B−2 + · · ·

)}
et .

(4.10)

This (formal) power series expansion is denoted ξ(B, B−1) in Gómez and Maravall
(2001b), such that pt = ξ(B, B−1)et . In Sect. 4.6 we will need the coefficients ξ j of
B− j for j > 0 which are given by

ξ j = θ j−1 (1 − θ)2

1 + θ

VP

V
, (4.11)

hence ξ1 = 0.094. We will also need the coefficient of B and the constant which
are thus numerically equal to ξ−1 = 1.499 and ξ0 = 0.937. Note that (4.10) can be
obtained more elegantly from (4.7) using a partial fraction expansion, like in Burman
(1980) approach (see Appendix 2):

pt =
[
α0 + α1B

1 − B
+ β0B−1

1 + 0.4995B−1

]
et ,

which gives after identification of the terms in the numerator and solving a linear
system of equations: α0 = 0.9375, α1 = 0.5997, and β0 = 0.0939.

We can proceed in the same way, but more simply, for the estimator of the irregular
component: the fraction on the right hand side of (4.8) is

1 − (1 + θ) B−1 + θ (1 + θ) B−2 − θ2 (1 + θ) B−3 + ...,

hence

it = 0.063et + 0.00(et−1 + et−2 + et−3

+· · ·) − 0.094et+1 + 0.047et+2 − 0.023et+3 − · · · (4.12)

These coefficients are computed in worksheet Main, in the range AY24 to BQ42. They
can be found in the output, located at item 18 in Table 4, more precisely in columns 2
(PSIEP) and 6 (PSIUE). The sum of the columns 2, 3, 5 and 6 (not column 4, contrarily
to what is said in the output; this is corrected in revision 935) gives the coefficient of
the moving average of the process defined by (3.1), i.e. 0 for strictly negative lags,
1 for lag 0, and 1 + 0.4995 for strictly positive lags. Like the Wiener-Kolmogorov
coefficients νP

j represent the contribution of yt− j to the estimator of the permanent
component, the coefficients in (4.10) represent the contribution of the innovations et− j

to that estimator.
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4.5 Autocorrelations of the components, the estimators and the estimates

It is specified in the output (see Table 5) that what is shown is the autocorrelation
function of a “stationary transformation of components and their estimators”. We
first check the components and the estimates, before the estimators which are more
complex to handle.

We have already specified the processes for the two components. The process
for the permanent component Pt is non-stationary. Therefore what is shown is the
autocorrelation function of the difference of the process, i.e.∇ yt . Since that process is
MA(1) with coefficient 1, the first-order autocorrelation is equal to 0.5 and the other
autocorrelations are equal to 0. This is shown in the second column of item 22 in
Table 5. The Excel file, sheet Main (range AF51 to AM121), shows the computation
of the first three autocorrelations for the estimate �pt of the permanent component Pt
detailed in Sect. 4.4: 0.539, 0.023,−0.051. See cells AI121, AK121 andAM121. They
agree with item 22 in Table 5, column “Estimate”. Computing the autocorrelations of
the estimator pt defined by (4.7) in function of the innovations of the process defined by
(3.1) is more complex. The coefficients of the moving average representation for ∇ pt
have already been found in (4.9) up to a factor VP/V . To evaluate the variance, we have
to take the sum of the squares of these coefficients given by 1+(2−θ)2+(1−θ)4/(1−
θ2), and multiply it by (VP/V )2. This yields 1.054, as indicated by item 22 in Table 5,
on the line “VAR” and in cell AZ22, or 0.24575 in original units, see cell BA22. The
autocovariances are computed in worksheetMain, in the range BS1 to DC19. Dividing
them by the variance located in cell AZ21, we obtain the autocorrelations displayed in
cells DD4 to DD19, e.g. 0.5501 for lag 1. They correspond to the contents of SEATS
output, item 22 in Table 5, column “Estimator”. The variance in units of V is in cell
AZ22.

The process for the irregular component It is stationary. Therefore a difference is
not needed to make it stationary and all autocorrelations are equal to 0 for strictly
positive lags. This is shown in the second column of item 23 in Table 5. The Excel
file, sheet Main, range AP51 to AW121, shows the computation of the first three
autocorrelations for the difference of the estimate ı̂t of the irregular component It
detailed in Sect. 4.4: −0.766, 0.421, −0.229, in cells AS121, AU121 and AW121.
They agree nearly perfectly with item 23 in Table 5, column “Estimate”, where the
respective results are −0.765, 0.421, −0.229. This discrepancy can be explained by
the relatively small number of exact significant digits for the irregular estimates. Even
if the autocorrelations for the estimates are not too far from the autocorrelations for
the estimator, they are not comparable with the autocorrelations for the component.
Computing the autocorrelations of the estimator it defined by (4.8) in function of the
innovations of the process defined by (3.1) is again more complex. The coefficients for
the moving average representation for it has already been found in (4.12). To evaluate
the variance, we have to take the sum of the squares of these coefficients and multiply
it by (VI /V )2, giving 0.016, as indicated by item 23 in Table 5, on the line “VAR”.
The autocovariances are computed in worksheet Main, in the range BS24 to DC41.
Dividing them with the variance located in cell AZ43, we obtain the autocorrelations
displayed in cells DD26 to DD41. They correspond to the contents of SEATS output,
item 23 in Table 5, column “Estimator”. The variance in units of V is in cell AZ44.
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Like the computation of the autocorrelations between the estimates of the two
components, �pt and ı̂t , we have tried to compute the contemporary (i.e. without lag)
cross-correlation between the estimates of the two components. Similarly with the pre-
vious results for the irregular component, we had some difficulties to recover exactly
the cross-correlation between the two components 0.279 shown in item 24 in Table 6,
column “Estimate”. We have also tried to find the cross-correlation between the esti-
mators pt and it using the coefficients of the moving average representation of the
two estimators. The results shown in worksheet Main, cell BT47, coincides with the
value 0.274 shown in item 24 in Table 6, column “Estimator”.

4.6 Revisions

This is related to the fact that occurrence of new observations will have a direct impact
on the forecasts, and thus on the estimates near the end of the series and, hence, to
the computation of one-sided filters, also called concurrent filters. This problem is
the subject of several papers (Maravall 1986; Gómez and Maravall 2001b; Bell and
Martin 2002). There is no impact on the derivation of the estimates of the component,
but on the interpretation side.

Again, let Pt be the permanent component and pt its estimator, both at time t . The
unobservable difference ft = Pt − pt is called the final estimation error. Let pt |T be
the estimator of Pt based on the series sup to time T . When t = T , we obtain what
is called the concurrent estimator pT |T . The difference tT = PT − pT |T is called the
total estimation error and can be decomposed, following Pierce (1980), into a sum of
two uncorrelated differences:

tT = PT − pT |T = (PT−pT ) + (
pT − pT |T

) = fT + rT , (4.13)

where the last term rT = pT − pT |T is called the revision error. We will treat these
errors tt , ft and rt as stochastic processes and analyze their properties, in particular
their variances and their autocorrelation functions.

Let us start with the final estimation error ft . Assuming again that the signal (here
the permanent component) and the noise (here the irregular component) do not have
common roots in the generalized autoregressive operators, ϕP (B) and ϕI (B), using
notations similar to those at the end of Sect. 2, Pierce (1979) has shown that ft follows
the following stochastic process,

ft = θP (B)θI (B)ϕ(B)

ϕP (B)ϕI (B)θ(B)
at ,

where the white noise process at has variance VPVI /V . Here ϕ(B) = ϕP (B) =
∇, θ(B) = (1 + θB), θP (B) = (1 + B) and θI (B) = ϕI (B) = 1, this becomes,
after simplification by ∇, (1 + θB) ft = (1 + B)at . This is similar to the process
defined in (4.3) for deriving theWiener-Kolmogorovweights except that the innovation
variance is different. Hence, the autocovariances of the final estimator are proportional
to the weights of the Wiener-Kolmogorov filter for the permanent component. The
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computation of the variance and the autocorrelations is done in the range AE1 to
AE37 of worksheet Main. In particular, using (4.4), the variance is 2VPVI /V (1+ θ).
For the series TICD, this is equal to V f = 0.01095, as shown in cell AF36. Expressed
in units of the variance of the innovations of the process for TICD, this is 0.04696,
as shown in item 27 of Table 7, column “Final estimation error”, line VAR. The
autocorrelations can be seen in the previous lines. For lags 1 and 12, they are 0.2503
and −0.0001, respectively.

The revision to the concurrent estimator rt = (pt − pt |t ) can be obtained as follows.
We have given the expression for the estimator pt in (2.7). Then pt |t+m can be obtained
by replacing in (2.7) observations yt+ j , for j > m, by forecasts made at time t + m
with horizon j −m. Alternatively, we can use (4.10) by taking only terms with powers
B− j for j > m. Hence, using (4.11), we can write for m > 0

pt − pt |t+m =
∞∑

j=m+1

ξ j B
− j et = (1 − θ)2

1 + θ

VP

V

∞∑
j=m+1

θ j−1B− j et . (4.14)

and this is a stationary process, and even a first-order autoregressive process written
in reverse time with an autoregressive polynomial (1− θB−1) and with an innovation
process of variance equal to V (VP/V )2(1 − θ)4/(1 + θ)2θ2m . Taking m = 0, the
variance of the revision to the concurrent estimator is therefore equal toV (VP/V )2(1−
θ)4/{(1+ θ)2(1− θ2)} = V (VP/V )2(1− θ)3/(1+ θ)3. The computations are done
in worksheet Main, in the range AI1 to AJ37. The numerical value of the variance is
Vr = 0.00274, see cell AJ36 and, expressed in units of V , it corresponds to the number
0.01175 displayed in item 27 in Table 7, column “Revision in concurrent estimator”,
line VAR and also on the line 0 of item 29 in Table 7. Note that the square root of
that variance is 0.0523 in cell AK36 and will be used below. The autocorrelations of
the revisions can be seen in the previous lines of item 27 in Table 7 and show the
exponential decrease and alternating signs typical of an AR(1) process with a negative
first-order partial autocorrelation. In particular, autocorrelations for lags 1 and 12 are
−0.4995 and 0.0002, respectively.

The total estimation error of the concurrent estimator tt defined by (4.13) is the sum
of the final estimation error ft and of the revision error rt , which are uncorrelated.
Hence, the covariance at lag j of tt is the sum of the covariance at lag j of ft and of
the covariance at lag j of rt . Thus the variance of tt is the sum of the variances of ft
and of rt : Vt = V f + Vr . It is computed in cell AN36 of worksheet Main and is equal
to Vt = 0.01369 or 0.05871 in units of V . The correlations are deduced in the range
fromAN1 toAN37 as weighted averages of the autocorrelations of the final estimation
errors and the revisions with the respective variances as weights. This corresponds to
the contents of item 28 in Table 7. For example, the first-order autocorrelation equals
0.1002 and the autocorrelation for lag 12 is 0 with 4 decimals.

For item 29 in Table 7 and additional periods, we need to use m > 0 in (4.14).
Additional period 12 corresponds tom = 12. The computations are done in worksheet
Main in the range AQ1 to AV36. The number shown 0.683E-09 can be seen in cell
AU18. For item 31 in Table 8, the column entitled “Trend-Cycle standard error of
revision” can be seen in the range AV6 to AV30 of the worksheet, going from bottom
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to top and with some approximations for long periods. For period 0, the number
0.05235 which can be seen in cell AV6 is the square root of the variance of revision
error Vr = 0.00274 in cell AT6 already mentioned in cell AJ36. The percentage
reduction in the standard error after one year, 99.98 %, shown in item 30 of Table 7, is
obtained in cell AW6. Computation of the standard errors of the total error, obtained
by adding V f = 0.01095 to the variance of the revision error, can be seen in cells
BS63 to CA71.

There remains to derive several columns of item 32 in Table 8 which were not
considered in Sect. 4.1. They are about the standard errors of the preliminary estimator
of the permanent component total and revision errors. Here we analyze for m > 0:

tt+m|t = Pt+m − pt+m|t = (Pt+m − pt+m) + (
pt+m − pt+m|t

)
.

Again, the variance of the first term is V f = 0.01095. The variance of the second term
depends on m since, according to (4.10)

pt+m − pt+m|t = ξ0et+m + ξ−1(et+1 + · · · + et+m−1) + ξ1

∞∑
j=1

et+m+ j .

Hence the variances are given by V {ξ20 +ξ2−1(m−1)+ξ21 /(1−θ2)}, equal respectively
for m = 1, 2, 3, to 0.2076, 0.7320, 1.2563, and taking square roots, this corresponds
to the respective standard deviations 0.4557, 0.8556, 1.121, in agreement with item
32 in Table 8. Adding these variances to V f = 0.01095 provides the variances of the
total errors 0.2186, 0.7429, 1.2672 with square roots 0.4675, 0.8619, 1.126, again for
m = 1, 2, 3, and in agreement with SEATS output. The computation of the weights
of the component estimator is shown in worksheet Main, in the range BS73 to BX77.

4.7 Growth rates

First of all, as already indicated in Sect. 3.7, the fifth part of the SEATS output,
entitled “Rates of growth”, provides growths since the model is applied on the data,
not on their logarithms. Hence we compute differences and standard errors are based
on linear ARIMA models. In the presence of a log-transform, effective rates would
be computed and standard error would be based on a linearized version of ARIMA
models. Since the tables are numbered, we will use these table numbers in addition to
the item indication.

SEATS Table 5.1 (item 35 in Table 9) shows the period-to-period growth estimation
error variance for the concurrent estimator, so thefirst differences of thefinal estimation
error, the revision error and the total estimation error. For example, the final estimation
error, denoted ft , has been analysed in Sect. 4.6. We need to compute var(∇ ft ) which
is equal to var( ft )+var( ft−1)−2cov( ft , ft−1) = 2×0.01095×(1−0.2503) = 0.016,
see cell AF40.

SEATS Table 5.2 (item 36 in Table 10) shows the period-to-period growth for the
most recent periods for the original series and the trend (with standard error of revision
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for the latter). The second column “Original series” coincides with the differenced
series also shown in item 3 of Table 1, see also range BJ54 to BJ113 of worksheet
Main, except that the rows are displayed in reverse order. The third column entitled
“Trend-Cycle Estimate” contains ∇Pt , already shown in range AE54 to AE113, also
in reverse order.

SEATS Table 5.3 (item 37 in Table 10) shows accumulated growth during the
present year, thus at the last date T or Dec-1979. For the original series, this is the
seasonal difference ∇12yT = yT − yT−12, whereas for the trend-cycle, this is the
seasonal difference ∇12PT = PT − PT−12. These differences are computed in cells
BN113 and BO113 of worksheet Main. The Trend-Cycle SER = 0.523E−1 which is
displayed is the standard error of revision for the trend shown in cell AV6 or AK36
and discussed in Sect. 4.6.

SEATS Table 5.4 (item 38 in Table 10) shows the annual growth estimation error
variance for the concurrent estimator, which is a first seasonal difference of the final
estimation error, the sum of the revision error and the total estimation error. As indi-
cated, the numbers are to be multiplied by 10. For example, the first one, denoted
ft , has been analysed in Sect. 4.6. We need to compute var(∇12 ft ) which is equal to
var( ft )+ var( ft−12)− 2cov( ft , ft−12) = 2× 0.01095× (1+ 0.0001) = 0.0219, see
cell AF41.

SEATS Table 5.5 (item 39 in Table 11) shows the annual growth for the most recent
periods, thus not only at the last date T or Dec-1979, as in SEATS Table 5.3, for the
original series and the trend-cycle (with standard error of revision for the latter). For
the original series, this is the seasonal difference ∇12yt = yt − yt−12, whereas for
the trend-cycle, this is the seasonal difference ∇12Pt = Pt − Pt−12. Hence the row
for Dec-1979 corresponds to SEATS Table 5.3. The other elements are computed in
ranges BN65 to BN113 and BO65 to BO113 of worksheet Main but in reverse order.
The standard error of revisions are those in cells AV6 to AV30, already discussed in
Sect. 4.6.

SEATS Table 5.6 (item 40 in Table 11) shows annual centred growth rates, which
are according to the documentation, base of a 6-month forecast and the correspond-
ing value 12 months before. Hence, the difference between the forecast in Jun-1980
and the value in Jun-1979. For the original series, it is 13.28 − 10.44 = 3.30
on row Dec-1979. On row Nov-1979, we have the difference between the fore-
cast for May-1980 and the value for May-1979. The standard errors are the square
roots of V (1 + 5(1 + θ)2) and V (1 + 4(1 + θ)2), respectively, since the horizons
are 6 and 5, respectively, using the standard errors for future values presented in
Sect. 4.1.

SEATS Table 5.7 (item 41 in Table 11) shows the growth forecasts for the original
series and the trend-cycle, with standard error of revision. More precisely, the first
row of the table refers to forecasts one period ahead and the second row to 12 periods
ahead, both at time T . In our case, the forecasts are all equal to 13.277, so the difference
with the observation at time T of the original series, 13.42, is −0.143. The difference
with the value at time T of the trend-cycle, 13.438, is −0.161. These two numbers
can be found on the first two rows. The standard errors are different in the two cases.
For one-period-ahead forecasts it corresponds to the square root of V for the original
series, hence 0.483 for the original series. For the trend-cycle, using the expression
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for pt+m|t and subtracting from (4.10) yields:

pt − pt+1|t = (ξ0 − ξ−1)et + ξ1

∞∑
j=0

θ j et+1+ j ,

hence, the standard error is 0.276, as can be seen in cell BQ124. For 12-periods-ahead
forecasts and the original series, the SER can be computed in a standard way from the
pure MA form of the respective model. For the original series of an ARIMA(0,1,1)
process with MA coefficient θ and with innovation variance V , it is the square root of
V (1 + 11(1 + θ)2), hence 2.449.

5 Conclusions

SEATS is now essential for seasonal adjustment since it is used in both Bureau of
the Census X-13ARIMA-SEATS and Bank of Spain TRAMO-SEATS, the main two
software packages for seasonal adjustment. There is a large amount of literature on
SEATS but, with a few exceptions, it is not intended for the final user.

Our purpose was to explain the text output of SEATS on a simple example. The
example is based on a non-seasonal series of U.S. interest rates on certificates of
deposit. The model-based decomposition in two components is simple and does not
involve a seasonalmodel. Thanks to that, it is possible to check the computations rather
easily using Microsoft Excel. In particular, we have verified the different admissible
decompositions; the selection of the canonical decomposition using the criterion of a
minimal variance for the irregular component and using a pseudo-spectrum criterion;
the derivation of theWiener-Kolmogorov filter for the two components; and the differ-
ence between theoretical components, their estimators and their estimates. We could
obtain the latter estimates but with a limited accuracy for the irregular component.
We have also checked the autocorrelations of the estimates, with only two significant
digits for some correlations involving the irregular component. On the contrary all the
results relative to the estimators could be confirmed.

Wewere able to obtainmost parts of the output. Note that we did not try to check the
graphical output. This can be the subject of another paper. We have only found a real
repeated mistake (items 16 in Table 3, 23 in Table 5, 28 and 30 in Table 7) in the text
output, concerning the variance of the innovations of the series and a small mistake
(item 17 in Table 4) which will be corrected with build 935. We have also pointed
out some discordances (in certain standard errors for rates of growth not mentioned
above) and a few misprints directly to the author. This does not affect the effective
impact of SEATS which is a solid piece of software for seasonal adjustment.

One objection against the present paper is that the model is much too simple and
without any seasonal component. A referee has made the following suggestion: to use
a specific ARIMA model that should be as simple as possible, but should contain a
seasonal component. For that purpose a pure seasonal model like (0, 0, 0)(0, 1, 1)s ,
with s = 2 may be considered, as it admits three components (cycle-trend, seasonal
component and irregular component) but it requires the estimation of few parameters
and few lags because s = 2. Of course another series instead of interest rates should
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be used, probably an artificial time series or a half-yearly version of a long real series.
This would be a different paper, however, and can be the subject of a follow-up paper,
possibly in collaboration. Also it is unclear whether Excel would be enough for the
task.
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Appendix 1: An introduction to spectral analysis

Besides the temporal approach to time series used inmost of this paper, such as autocor-
relations, filters and ARIMA modelling, another approach is possible: the frequency
or spectral approach. In mathematical terms, it comes from the Fourier transform of
the temporal approach. A priori, the information must be similar but there are some
applications where the spectral approach is instructive. It occurs in the treatment of
seasonality, or those applications where oscillatory phenomena predominate. To fix
ideas, assume a stationary process where time is expressed in months. The spectrum or
spectral density is the distribution of the scatter, specifically the variance, as a function
of the frequency, or its inverse which is the period:13

– low frequencies (corresponding to long periods) are related to the long term, several
years;

– high frequencies (corresponding to short periods) are related to the short term, a
few months at most;

– intermediary frequencies (corresponding to medium periods) are relative to the
medium term.

Frequencies are expressed as numbers between 0 and 0.5. The period is the inverse
of the frequency and varies between infinity (=1/0) and 2 (=1/0.5). We will denote f
the frequency. Some authors express the frequency as an angular frequency, measured
in radians. If we denote ω (Greek omega) the angular frequency, it is ω = 2π f ,
where π = 3.1415... The angular frequency varies between 0 and π. The period is
then expressed by 2π /ω .

13 Based on Mélard (2006).
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Denote S( f ) the spectral density, in short the spectrum at frequency f, f in [0;
0.5]. The variance is the “sum” of all S( f ), which is written as an integral

σ 2 = 2
∫ 0,5

0
S( f )d f . (A1.1)

More generally, the spectral density is the Fourier transform of the autocovariance
function:

γk = 2
∫ 0,5

0
S( f )e2π ik f d f ,

which yields (A1.1) in the case where k = 0. Conversely, we can write the inverse
Fourier transform:

S( f ) =
∞∑

k=−∞
e−2π ik f γk,

taking into account that γk = γ−k . Note that the series R(z) = ∑∞
k=−∞ γk zk is

the autocovariance generating function. It can be obtained by replacing in S( f ) the
imaginary exponential e2π i f by z.

For example, consider an MA(1) process defined by yt = et + θet−1, where the
innovation variance is σ2. The autocovariance at lag 0 is (1 + θ2) σ2 and the autoco-
variance at lag +1 and −1 are equal to θ σ2 so that there

S( f ) = (1 + θ2)σ 2 + σ 2θ(e2π i f + e−2π i f )

= (1 + θ2)σ 2 + 2σ 2θ cos(2π f )

= σ 2[1 + θ2 + 2θ cos(2π f )].

If θ < 0, there is a negative autocorrelation at lag 1, and the spectrum is higher at
0.5 than at 0 (see Fig. 4, left).14 If θ > 0, there is a positive autocorrelation at lag 1,
resulting in a higher spectrum at 0 than at 0.5 (see Fig. 4, right). If θ = 0, the process
is white noise and its spectrum is constant, i.e. all frequencies have the same density.
An equivalent alternative approach is to define S( f ) as the square of the module of
the polynomial moving average evaluated at e2π i f :

S( f ) = σ 2
∣∣∣1 + θe2π i f

∣∣∣
2 = σ 2

[
1 + θ2 + 2θ cos(2π f )

]
.

14 The plots shown in Figs. 4, 5, 6 can be obtained using the provided Excel file (Online Resource 2), see
worksheets SpectrumProc or LogSpectrumProc, by changing the contents of the range Q12 to V12 by one
of the lines in the range Q68 to Q73.
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In the case of an AR(p) process, we do the same with the inverse of the autoregres-
sive polynomial, for example for an AR(4) process, defined by the equation

yt + φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 = et , (A1.2)

where the innovation variance is 1:

S( f ) = 1∣∣1 + φ1e2π i f + φ2e2π i(2 f ) + φ3e2π i(3 f ) + φ4e2π i(4 f )
∣∣2 . (A1.3)

Fig. 5 show cases of an AR(1) process (A1.2) with φ1 = φ, φ2 = φ3 = φ4 = 0.
For a monthly series, a seasonality in the series will be shown by a large frequency

content at frequencies that correspond to period 12 (since 1 year = 12 months) but
also its submultiples 12/2 = 6, 12/3 = 4, 12/4 = 3, 12/5 = 2.4 and 12/6 = 2. Consider
for example the following process:

yt − 0.8yt−12 = et − 0.6et−1. (A1.4)

It is a stationary processwith roots for the autoregressive polynomial inmodule equal to
(1/0.8)1/12 > 1. It is also invertible because the root of themoving average polynomial
is (1/0.6) > 1. The spectrum is defined as the ratio of the squares of the following
modules:

S( f ) = σ 2

∣∣1 − 0.6e2π i f
∣∣2

∣∣1 − 0.8e2π i(12 f )
∣∣2 .

The spectrumwill feature spikes at frequenciesmultiple of 1/12. Sometimes spectra
are considered on a logarithmic scale. The logarithmic scale is aimed at compressing
large values. For the process defined by (A1.4), the spectrum is illustrated on the left
of Fig. 6.

So far we have defined the spectral density of a stationary process. The case of a
non-stationary process is more complicated. We mean here the case of an ARIMA or
SARIMA process having unit roots, because of the presence of a regular difference
and/or of a seasonal difference. In these cases, the approach by the autocorrelations no
longer holds. Nevertheless, we can still define the generalized spectrum by the second
approach (see Hatanaka and Suzuki 1967), given that the spectral density can be infi-
nite for certain frequencies. For example the generalized spectrum of ARIMA(0,1,1)
process, defined by the equation yt − yt−1 = et + θet−1, with innovation variance
equal to σ2 is:

S( f ) = σ 2

∣∣1 + θe2π i f
∣∣2

∣∣1 − e2π i f
∣∣2 = σ 2 1 + θ2 + 2θ cos(2π f )

2 − 2 cos(2π f )
. (A1.5)

Since cos(0) = 1, at frequency 0, the spectrum is proportional to the inverse of 2 − 2
= 0, so it is infinite. An example is treated at the right of Fig. 6 or in Fig. 2.
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To estimate the pseudo-spectrum using a series, several techniques are possible.
There are methods using the Fourier transform of the estimated autocorrelations and
then smoothing the values obtained in a narrow window around a given frequency. In
an associated Excel file (Online Resource 5), we have illustrated the autoregressive
approach which consists of adjusting the series by an AR model of high enough order
and calculating the spectrum of the corresponding process, without the restrictions on
series length of the fast Fourier transform.

Appendix 2: Introduction to the use of spectral analysis in SEATS

In the main text of the paper, especially in Sects. 3.2, 3.3 and 3.4, we have presented a
conceptual approach behind SEATS which is not the procedure effectively used. For
computational convenience, SEATS follows an alternative approach based on spectral
analysis, as in Burman (1980). More precisely, the (generalized) spectral density of
the series is first derived from the ARIMA model obtained using TRAMO on the
(generally corrected) time series.

For the three-component model (2.1), since the components are assumed to be
mutually independent, the spectrum of the series is the sum of the spectra of the three
components:

Sy( f ) = SP ( f ) + SS( f ) + SI ( f ).

In Appendix 1, we have noticed the basic features of trend (and cycle), seasonal and
irregular components: the trend-cycle or permanent component corresponds to large
values close to f = 0 (e.g. in Fig. 5, left part or in Fig. 6, right part). The seasonal
component corresponds to large values close to f = 0.5( j/6), j = 1, 2, 3, 4, 5, 6
(e.g. in Fig. 6, left and right parts). The irregular component corresponds to a flat or
even constant spectrum (e.g. in Fig. 4, both parts). The models for the components in
SEATS are in fact obtained as in Burman (1980), by first decomposing the spectrum of
the series bymeans of a partial fraction expansion in terms of the variable cos(2π i f ) =
(e−2π i f + e2π i f )/2. Then, the decomposition is made canonical in a second step to
identify the components and the components spectra are correspondingly changed. It
is to be noticed that the link between the autocovariance generating function of the
series and the spectrum is exploited, see Appendix 1. Consequently, the spectra for the
components give the models for the theoretical components through their covariance
generating functions. In addition, the Wiener-Kolmogorov filter for the Pt component
is

υP (B, B−1) = RP (B)

Ry(B)
,

where RP and Ry are the autocovariance generating functions of the components Pt
and the series yt . Finally, the expression for

�

Pt = υP (B, B−1)yt gives the model
for the historical estimator

�

Pt after we have replaced yt with [θ(B)ϕ(B)]et in the
previous expression. This model depends on both B and B−1 and assumes that the
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doubly infinite series is known. The weights ν j given by υP (B, B−1) are in fact the
autocovariances of the auxiliary process mentioned in (2.8).

In the case of the ARIMA(0,1,1) model for the interest rates of U.S. certificates of
deposit, the spectrum is given by (A1.5) but S( f ) can also be written as a function R
of e2π i f

R(e2π i f ) = σ 2

∣∣1 + θe2π i f
∣∣2

∣∣1 − e2π i f
∣∣2 = σ 2 (1 + θe2π i f )(1 + θe−2π i f )

(1 − e2π i f )(1 − e−2π i f )
, (A2.1)

or, replacing e2π i f by z, and denoting like in the text the innovation variance σ 2 by V ,
as a rational function of z which is a generalized autocovariance generating function:

R(z) = V
(1 + θ z)(1 + θ z−1)

(1 − z)(1 − z−1)
= V

1 + θ2 + θ(z + z−1)

2 − (z + z−1)
. (A2.2)

Nowwe can introduce the auxiliary variable x = (z+z−1) and obtain a partial fraction
expansion

R(z) = V

2

1 + θ2 + 2θx

1 − x
= −V θ + V

2

(1 + θ)2

1 − x
= −V θ + V

(1 + θ)2

2 − (z + z−1)
.

(A2.3)

The first term corresponds to the irregular component and the second term, to the trend
component. Moreover we obtain directly, like in Sect. 2, the two variances VI and VP

by equating the expressions for the numerators: VI = −θV and VP = (1 + θ2)V ,
giving a non-admissible decomposition. But we can add and subtract a constant K ,
for example, to the right hand side of (A2.3) to get

R(z) = −V θ + K +
(
V

(1 + θ)2

2 − (z + z−1)
− K

)
. (A2.4)

This leads to (3.4). The canonical decomposition is obtained by taking the maximum
K as long as meaningful models for Pt and It are obtained.
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