3,626 research outputs found

    Clusters of Cycles

    Full text link
    A {\it cluster of cycles} (or {\it (r,q)(r,q)-polycycle}) is a simple planar 2--co nnected finite or countable graph GG of girth rr and maximal vertex-degree qq, which admits {\it (r,q)(r,q)-polycyclic realization} on the plane, denote it by P(G)P(G), i.e. such that: (i) all interior vertices are of degree qq, (ii) all interior faces (denote their number by prp_r) are combinatorial rr-gons and (implied by (i), (ii)) (iii) all vertices, edges and interior faces form a cell-complex. An example of (r,q)(r,q)-polycycle is the skeleton of (rq)(r^q), i.e. of the qq-valent partition of the sphere S2S^2, Euclidean plane R2R^2 or hyperbolic plane H2H^2 by regular rr-gons. Call {\it spheric} pairs (r,q)=(3,3),(3,4),(4,3),(3,5),(5,3)(r,q)=(3,3),(3,4),(4,3),(3,5),(5,3); for those five pairs P(rq)P(r^q) is (rq)(r^q) without the exterior face; otherwise P(rq)=(rq)P(r^q)=(r^q). We give here a compact survey of results on (r,q)(r,q)-polycycles.Comment: 21. to in appear in Journal of Geometry and Physic

    Computational determination of the largest lattice polytope diameter

    Full text link
    A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let {\delta}(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine {\delta}(d, k) for small instances. We show that {\delta}(3, 4) = 7 and {\delta}(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby {\delta}(d, k) is at most (k + 1)d/2 and is achieved, up to translation, by a Minkowski sum of lattice vectors

    Properties of parallelotopes equivalent to Voronoi's conjecture

    Get PDF
    A parallelotope is a polytope whose translation copies fill space without gaps and intersections by interior points. Voronoi conjectured that each parallelotope is an affine image of the Dirichlet domain of a lattice, which is a Voronoi polytope. We give several properties of a parallelotope and prove that each of them is equivalent to it is an affine image of a Voronoi polytope.Comment: 18 pages (submitted

    Berge Sorting

    Full text link
    In 1966, Claude Berge proposed the following sorting problem. Given a string of nn alternating white and black pegs on a one-dimensional board consisting of an unlimited number of empty holes, rearrange the pegs into a string consisting of ⌈n2⌉\lceil\frac{n}{2}\rceil white pegs followed immediately by ⌊n2⌋\lfloor\frac{n}{2}\rfloor black pegs (or vice versa) using only moves which take 2 adjacent pegs to 2 vacant adjacent holes. Avis and Deza proved that the alternating string can be sorted in ⌈n2⌉\lceil\frac{n}{2}\rceil such {\em Berge 2-moves} for n≥5n\geq 5. Extending Berge's original problem, we consider the same sorting problem using {\em Berge kk-moves}, i.e., moves which take kk adjacent pegs to kk vacant adjacent holes. We prove that the alternating string can be sorted in ⌈n2⌉\lceil\frac{n}{2}\rceil Berge 3-moves for n≢0(mod4)n\not\equiv 0\pmod{4} and in ⌈n2⌉+1\lceil\frac{n}{2}\rceil+1 Berge 3-moves for n≡0(mod4)n\equiv 0\pmod{4}, for n≥5n\geq 5. In general, we conjecture that, for any kk and large enough nn, the alternating string can be sorted in ⌈n2⌉\lceil\frac{n}{2}\rceil Berge kk-moves. This estimate is tight as ⌈n2⌉\lceil\frac{n}{2}\rceil is a lower bound for the minimum number of required Berge kk-moves for k≥2k\geq 2 and n≥5n\geq 5.Comment: 10 pages, 2 figure

    Understanding Image Virality

    Full text link
    Virality of online content on social networking websites is an important but esoteric phenomenon often studied in fields like marketing, psychology and data mining. In this paper we study viral images from a computer vision perspective. We introduce three new image datasets from Reddit, and define a virality score using Reddit metadata. We train classifiers with state-of-the-art image features to predict virality of individual images, relative virality in pairs of images, and the dominant topic of a viral image. We also compare machine performance to human performance on these tasks. We find that computers perform poorly with low level features, and high level information is critical for predicting virality. We encode semantic information through relative attributes. We identify the 5 key visual attributes that correlate with virality. We create an attribute-based characterization of images that can predict relative virality with 68.10% accuracy (SVM+Deep Relative Attributes) -- better than humans at 60.12%. Finally, we study how human prediction of image virality varies with different `contexts' in which the images are viewed, such as the influence of neighbouring images, images recently viewed, as well as the image title or caption. This work is a first step in understanding the complex but important phenomenon of image virality. Our datasets and annotations will be made publicly available.Comment: Pre-print, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201
    • …
    corecore