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Abstract

A parallelotope is a polytope whose translation copies fill space without gaps and intersections by
interior points. Voronoi conjectured that each parallelotope is an affine image of the Dirichlet domain
of a lattice, that is to say a Voronoi polytope. We give several properties of a parallelotope and prove
that each of them is equivalent to it being an affine image of a Voronoi polytope.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Let us have a decomposition ofRn into equal convexpolytopes (tiles) such that the
decomposition is simultaneously a covering and a packing and the intersection of any two
polytopes is empty or a common face of each. Such a partition is calledtiling. Let this tiling
be invariant under a groupT of translations, and the groupT is transitiveon polytopes of
the tiling. Then each tile of such a partition is calledparallelotope. Here theprefixparallelo
emphasizes that each tile is a parallel translation of a prototile. (Following [6] we use the
wordparallelotoperatherthanparallelohedronwhich was used by Voronoi in [12]. Recall
also that apolyhedronis a three-dimensionalpolytope.)

Voronoi in Section 8 of [12] defines aparallelohedron as follows. A polytopeP with
a group of translationsT is called a parallelohedron if the spaceRn can be filled by non-
overlapping congruent copies ofP using translations taken fromT .

Each parallelotope necessarily satisfies the following three conditions:

E-mail addresses:deza@ens.fr (M. Deza), grishuhn@cemi.rssi.ru (V. Grishukhin).

0195-6698/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2003.09.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82268637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/ejc


518 M. Deza, V. Grishukhin / European Journal of Combinatorics 25 (2004) 517–533

(i) a parallelotope is centrally symmetric;
(ii) each facet (=(n − 1)-dimensional face) of a parallelotope is centrally symmetric;

(iii) for n > 1, the projection of a parallelotope along any(n − 2)-dimensional face is
either a parallelogram or a centrally symmetric hexagon.

The edges of the polygon of item (iii) above are projections of four or six facets of
the projected parallelotopeP. These facets form abelt of the parallelotopeP. Hence the
property (iii) of a parallelotopeP has another formulation. Namely,

(iii) ′ for n > 1, each belt of a parallelotopecontains four or six facets.
Venkov [11] (and independently McMullen [8]) proved that the above three conditions

are sufficient for a polytope to be a parallelotope. Aleksandrov [1], knowing Venkov’s
result, simplified the proof of Venkov.

There is a special well known case of a parallelotope, namely, the Voronoi polytope
related to a point of a latticeL. The Voronoi polytopePV (t0) related to a pointt0 ∈ L is
the set ofpoints ofRn which are at least as close tot0 as to any other point ofL.

The main conjecture of Voronoi is that any parallelotopeP can be mapped into a
Voronoi polytopePV under an affine transformationx → Ax of the space containingP.
HereA is anon-degeneraten × n matrix, wheren is the dimension of the space.

Call a k-face (=k-dimensional face) of a parallelotopeprimitive if it belongs to the
minimal possible number n − k + 1 of parallelotopes of its tili ng. Obviously any facet
of a parallelotope is primitive. According to Zhitomirskii [13], a parallelotope is called
k-primitive if each of its k-face are primitive. Besides, thek-primitivity implies the
(k + 1)-primitivity. A 0-primitive parallelotope is simply calledprimitive. Obviously, any
parallelotope is(n − 1)-primitive.

Voronoi proved his conjecture for primitive parallelotopes. If a parallelotope is
primitive, then each its belts contain six facets, but not conversely. On the other hand,
if each belt consists of six facets, then the parallelotope is(n − 2)-primitive. This implies
that each(n − 2)-face belongs to three parallelotopes. Zhitomirskii [13] extend the result
of Voronoi over(n − 2)-primitive parallelotopes.

McMullen [7] proved that a parallelotope which is a zonotope is combinatorially
equivalent to a Voronoi polytope. Later Erdahl [3] completed the result of McMullen
proving that a zonotopal parallelotope is affinely equivalent to a Voronoi polytope.
Delaunay [5] proved Voronoi’s conjecture in complete generality for the dimensionsn ≤ 4.

We givehere several conditions on a parallelotopeP each of which is equivalent to: the
Voronoi’s conjecture is true forP.

2. Parallelotopes

Now we consider a description of a parallelotopeP = P(0) with the center in origin
by a system of linear inequalities. We denote byAT the transpose of a matrixA and by
xTy = yTx the scalar product of two column vectorsx, y ∈ Rn, and setxTx = x2.

Being a convex polytope a parallelotope is described by a system of linear inequalities
{qT

i x ≤ αi }. Since, by (i) of the Introduction,P is centrally symmetric, each facetFi

of P has the opposite facet−Fi . If Fi lies in the affine hyperplane given by the equality
qT

i x = αi , then the opposite facet−Fi lies in the affine hyperplaneqT
i x = −αi . By the
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facetFi , theparallelotopeP is adjacent to a parallelotopeP(ti ) which is a parallel shift of
P by the translation vectorti ∈ T .

Let IP be the set of indices of pairs of opposite facets ofP. Then the set{ti : i ∈ IP}
of translation vectors generates the translation groupT and a latticeL. Thepoints of L,
i.e. the centers of parallelotopes of the tiling, are the end-points of lattice vectors. We can
identify each lattice vector with an elementt ∈ T . By this identification the origin is the
zero point and simultaneously the zero lattice vector 0 ofL.

Obviously, the point12ti is the center of the facetFi . Hence 1
2qT

i ti = αi . We have

P(0) = {x ∈ Rn : −1
2qT

i ti ≤ qT
i x ≤ 1

2qT
i ti , i ∈ IP}. (1)

Here thefacet vectors qi are determined only up to a non-zero multipleβi . We say
that the facet vectorsqi and the lattice vectorsti , i ∈ IP, giving the description (1) of a
parallelotopeP, areassociated.

The parallelotopeP(t) with the center in the pointt ∈ L is a translation ofP(0) by the
vectort , and therefore it is described as follows:

P(t) = {x ∈ Rn : −1
2qT

i ti ≤ qT
i (x − t) ≤ 1

2qT
i ti , i ∈ IP}. (2)

Note that, by definition of a Voronoi polytope, a facetFi of the Voronoi polytopePV (0)

is orthogonal to the lattice vectorti and bisects it. The lattice vectorti connects the centers
of PV (0) and PV (ti ), where PV (ti ) is the Voronoi polytope adjacent toPV (0) by the
facetFi . In other words, we can setqi = ti in the descriptions (1) and (2) of parallelotopes
P(0) andP(t) in thecase they are Voronoi polytopes.

3. Linear transforms of parallelotopes

Note that the usual Euclidean normx2 is used in the definition of the Voronoi polytope
PV (0). But we can use an arbitrary positive quadratic formf (x) = xTDx as a norm
of x. Here D is a symmetric positive definiten × n matrix. Then the above definition
gives a parallelotopePf . Call such aparallelotope theVoronoi polytope with respect to
the quadratic form f(x). Such a parallelotope relates to a latticeL (or to a translation
groupT ). Consider the Voronoi polytopePf with respect to the quadratic formxTDx in
detail. By definition, we have

Pf (0) = {x ∈ Rn : xTDx ≤ (x − t)T D(x − t) for all t ∈ T }.
It is well known, that a finite set{±ti : i ∈ I f } of vectorsti ∈ T is sufficient for the
description ofPf (0).

Using the symmetry ofD and joining the inequalities forti and−ti , we simplify this as
follows:

Pf (0) = {x ∈ Rn : −1
2tT

i Dti ≤ tT
i Dx ≤ 1

2tT
i Dti , i ∈ I f }. (3)

For D = In, whereIn is the identity matrix, we havef (x) = x2 andPf (0) = PV (0).

Lemma 1. Let P be aparallelotope given by(1). Let A be an n×n non-degenerate matrix,
and D = AT A. The following assertions are equivalent:
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(i) the affine transformation x→ Ax transforms P into a Voronoi polytope;
(ii) P is the Voronoi polytope with respect to the quadratic form f(x) = xTDx;
(iii) the facet vectors qi satisfy the equality qi = Dti , i ∈ IP.

Proof. (i) ⇒ (iii ). Consider the affinetransformationx → Ax. The new facet vector has
the form(AT)−1q. In fact, forx ∈ F , thepoint Ax belongs to a facet ofAP. Hence

((AT)−1q)T Ax = qT((AT)−1)T Ax = qT A−1Ax = qTx = 0.

The new center of the transformed facet is1
2 Ati . For AP to be a Voronoi polytope, we have

to have

(AT)−1qi = Ati , i.e.qi = AT Ati , i.e.qi = Dti .

(ii) ⇒ (i) The positive definite matrixD can be represented as the productD = AT A,
where the matrixA is non-degenerate. Hence the formxTDx = xT AT Ax = (Ax)T(Ax)

is the quadratic form(Ax)2 in the transformed space, i.e.P = Pf = P(Ax)2. Let y = Ax.
Thenx = A−1y andP = P(Ax)2 = A−1Py2 = A−1PV . Hence AP = PV .

(iii ) ⇒ (ii) If we set in (1) qi = Dti , we obtain description (3) of a parallelotope.
Hence the Voronoi polytope with respect to a quadratic form is also a special case of a
parallelotope, whenqi = Dti . In other words,in this case, the parallelotopeP(0) of (1) is
Pf (0) for f (x) = xTDx. �

4. A canonical representation of a parallelotope

Consider a vertexv of a facetFi . Let v be the intersection of facetsFj , j ∈ I(v). Then
i ∈ I(v) and

qT
j v = 1

2qT
j t j , j ∈ I(v).

Since each facet ofP is centrally symmetric, there is a symmetric tov vertexvs ∈ Fi . We
have

qT
k vs = 1

2qT
k tk, k ∈ I(vs).

Note that the point12(v + vs) is the center12ti of the facetFi . Hence

v + vs = ti , i.e.vs = ti − v.

Recall that there are the following two types of belts in the parallelotopeP:

(1) 3-belts containing six facets±Fi , ±Fj , ±Fk;
(2) 2-belts containing four facets±Fi , ±Fj .

We denote each belt by the set of indices of its generating facets. So, we have the
following two types of belts:{i , j , k} and{i , j }.

Therefore some facet vectors of the pair of the sets{qj : j ∈ I(v)} and{qk : k ∈ I(vs)}
are joined into pairs of two types such that

(1) either the facetsFi , Fj , Fk belong to the 3-belt{i , j , k};
(2) or the facetsFj andFk are opposite, i.e.Fk = −Fj , andbelong to the 2-belt{i , j }.
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LetB be the set of all 3-belts. Consider a belt{i , j , k} ∈ B. The facets vectorsqi , qj , qk

lie in a two-dimensional plane, which is orthogonal to(n−2)-faces of the belt. Hence they
are linearly dependent. Obviously, the associated lattice vectorsti , t j , tk are also linearly
dependent. Moreover, this dependence has the following form:

ti − ε j t j − εktk = 0, {i , j , k} ∈ B, (4)

whereε j , εk ∈ {±1}. Since each facet vectorqi is defined up to a scalar multiplierβi ,
we can choose lengths of the associated facet vectors such that the new facet vectorβi qi

satisfies the equality similar to (4)

βi qi − ε j β j qj − εkβkqk = 0, {i , j , k} ∈ B. (5)

Following [12] and [10], we say that, for the belt{i , j , k}, the facet vectorsqi , qj , qk are
definedcanonically with respect to the 3-belt{i , j , k} if they satisfy the same equality as
the associated lattice vectorsti , t j , tk.

Definition. A parallelotopeP is defined canonicallyby (1) if the facet vectorsqi , i ∈ IP,
are defined canonically simultaneously with respect to all belts ofP.

In other words, a parallelotopeP is defined canonicallyif the system of Eq. (5)
determining multipliersβi , i ∈ IP, has a non-zero solution.

Voronoi proves in [12] that a primitive parallelotope can be defined canonically.

5. Relations between the lattice and facet vectors

We suppose that the facet vectorsqi , qj andqk determine the facetsFi , Fj and Fk,
respectively. Hence the vectorε j qj defines the facetε j Fj .

In Proposition 1below, for the sake of simplicity, we suppose thatε j = εk = 1. To
apply the results below to the general dependencies (4) and (5), it is sufficient to changeqj

andqk by ε j qj andεkqk, respectively.
So the lattice vecors, corresponding to the belt{i , j , k}, satisfy the equality

ti = t j + tk. (6)

Hence the defined canonically facet vectors satisfy the equality

qi = qj + qk (7)

and the intersectionsFi ∩ Fj and Fi ∩ Fk are non-empty and define two opposite facets
of Fi .

For i ∈ IP, let Ii = { j ∈ IP : Fj ∩ Fi is an (n − 2)-face of P} (which is a facet
of Fi ). LetBi be the set of 3-belts containing the facetFi . Now, using the property (ii) of
parallelotopes, we prove an important fact.

Proposition 1. For all j ∈ Ii , the vectors qj can be defined canonically with respect to
all 3-belts ofBi . For these canonical facet vectors we have
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(1) for a 3-belt {i , j , k} ∈ Bi the following equalities hold:

qT
i t j = qT

j ti , qT
i tk = qT

k ti , qT
j tk = qT

k t j ;
(2) for a 2-belt {i , j }, j ∈ Ii the following equalities hold:

qT
j ti = qT

i t j = 0.

Proof. Obviously, the vectorsqj , j ∈ Ii , can be defined canonically with respect to all
3-belts ofBi , sincethe belts ofBi have only one common vectorqi .

Recall that opposite verticesv andvs of the facetFi are determined by facet vectors
some of which form belts withqi . Consider the equations

qT
j v = 1

2qT
j t j , qT

k vs = 1
2qT

k tk,

related either to a 3-belt{i , j , k} or to a 2-belt{i , j }, and thenqk = −qj .
For thecase (1), substituting the expressionsqk = qi − qj , tk = ti − t j , vs = ti − v, in

the second equation, and using the equalitiesqT
i v = 1

2qT
i ti , qT

j v = 1
2qT

j t j , weobtain

qT
k vs = 1

2qT
k tk ⇒ (qi − qj )

T(ti − v) = 1
2(qi − qj )

T(ti − t j )

⇒ qT
i (ti − v − 1

2ti + 1
2t j ) = qT

j (ti − v − 1
2ti + 1

2t j ) ⇒ qT
i t j = qT

j ti .

Similarly, beginning withqT
j v = 1

2qT
j t j and using the equalityv = ti − vs, weobtain the

equalityqT
i tk = qT

k ti . Now, this equality implies

(qj + qk)
Ttk = qT

k (t j + tk) ⇒ qT
j tk = qT

k t j .

In the case (2) we haveqk = −qj , tk = −t j . Hence we obtain

qT
k vs = 1

2qT
k tk ⇒ qT

j (v − ti ) = 1
2qT

j t j ⇒ qT
j (

1
2t j − ti ) = 1

2qT
j t j ⇒ qT

j ti = 0.

Using the facetFj instead ofFi , weobtain the equalityqT
i t j = 0. �

Note that the equalitiesqT
j ti = 0 = qT

i t j do not depend on whetherqi and qj are
canonical or not.

Let |IP| = m and letQ andT be n × m matrices whose columns are the vectorsqi

andti for i ∈ IP, respectively. Then the productqT
i t j is the(i j )th element of the matrix

productQTT . If theequalities

qT
i t j = tT

i qj hold for all pairsi , j ∈ IP, (8)

then them × m matrix QTT is symmetric, i.e.QTT = (QTT)T = TTQ.

Lemma 2. The followingassertions are equivalent:

(i) the equalities qTi t j = tT
i qj hold for all pairs i, j ∈ IP;

(ii) there is a unique symmetric non-degenerate n× n matrix D suchthat qi = Dti for
all i ∈ IP.

Proof. (i) ⇒ (ii) Let Ib ⊆ IP be ann-subset ofIP such that the set{ti : i ∈ Ib} is
linearly independent. LetTb andQb be the submatrices ofT andQ composed by column
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vectorsti andqi for i ∈ Ib, respectively. ThenTb is ann × n nondegenerate matrix. If (8)
is true, then it implies the equalityTT

b Q = QT
bT . This equality is equivalent to the equality

Q = DT,

where D = (TT
b )−1QT

b = (QbT−1
b )T. The matrix D is symmetric. In fact, take a

restriction of the equalityQ = DT onto the columnsti , qi for i ∈ Ib. The restriction
is Qb = DTb, i.e. QbT−1

b = D = (QbT−1
b )T. The matrix D does not depend on a

choice ofTb. In fact, if thereis another symmetric matrixD′ suchthat Q = D′T , then
D = QbT−1

b = D′TbT−1
b = D′.

(ii) ⇒ (i) Conversely, let qi = Dti . ThenqT
i t j = (Dti )Tt j = tT

i Dt j = tT
i qj . �

6. Graphs related to tilings

Recall that the centers of parallelotopesP(t) form a latticeL. Consider the points ofL
(i.e. the endpoints of lattice vectors) as vertices of a graphGL . Two verticest, t ′ ∈ L are
adjacent inGL if and only if t − t ′ ∈ {±ti : i ∈ IP}. We can considerGL as a directed
graph, where the direction of the edgeti is the direction of the vectorti . Hence edges of
GL are the vectors±ti , i ∈ IP. Therefore the set of all edges ofGL is partitioned into
m = |IP| classesEi . We suppose that all edges ofEi are vectorsti (with the same sign,
say+). In other words, all edges ofEi are obtained from one by translations. For each
i ∈ IP, a vertex ofGL is incident to two edgesti , one of which goes out and another
comes in the vertex.

For any collection of integers{zi : i ∈ IP}, we sett (z) = ∑
i∈IP

zi ti andq(z) =∑
i∈IP

zi qi . Let I(z) = {i ∈ IP : zi �= 0} be thesupportof z = {zi : i ∈ IP}.
Any two verticest0 andt are connected inGL by an oriented pathP directed fromt0

to t . We denote such a path as a sequenceP = (t1, t2, . . . , ts) of vectorstk ∈ {±ti : i ∈ IP}
corresponding to edges of the path in the natural order. Heretk = ti or tk = −ti according
to the directions of the path and the corresponding edge coincide or not, respectively. Then,
obviously,t = t0+∑s

k=1 tk. In particular, if the path is closed, i.e. it is a circuit andt = t0,
then

∑s
k=1 tk = 0. We rewrite the sum

∑s
k=1 tk as

∑
i∈IP

zi (P)ti = t (z(P)) = t (P). So,

t = t0 + t (P). We setI(P) = I(z(P)). Note that there are many paths with the same
collectionz(P). All of them are obtained fromP by permutations of the edgestk.

Since the set{±ti : i ∈ IP} generates the latticeL, any lattice vectort has a (non-
unique) representationt = t (P), whereP is a path inGL connecting 0 witht . We
associate the vectorq(P) = ∑

tk∈P qk to the vectort (P). We call the vectorq(P) the

vector associatedto the vectort (P). If theequalitiesqT
i t j = qT

j ti hold for all i , j ∈ IP,
then usingLemma 2we see thatq(P) = Dt (P) does not depend onP . Theuniqueness
of q in this case follows from the fact that the equality

∑
k tk = 0 implies the equality∑

k qk = 0.
Consider some important subgraphs of the graphGL . Let t ∈ L and letG(t) be the

graph induced by all verticest ′ ∈ L adjacent tot . Theunion oft andG(t) is thesuspension
∇G(t). In thegraph∇G(t), the vertext is adjacent to all vertices ofG(t).

For t = 0, the vertices ofG(0) are endpoints of the vectors±ti , i ∈ IP. In other words,
the graphG(0) is determined on two copies of the setIP. In fact, any edgeti of G(0)
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belongs to a triangle
 = (ti , t j , tk) of ∇G(0) suchthatti − ε j t j − εktk = 0. Thistriangle
corresponds to the belt{i , j , k} of P(0). Moreover, there are six such triangles in∇G(0).
These six triangles form a hexagon spanning a two-dimensional plane.

Let G(Fk) be the graph induced by the centersof all parallelotopes having withP(0) a
commonk-faceFk. So, the graphG(Fn−1) is an edgeti with end-vertices corresponding
to adjacent parallelotopesP(0) and P(ti ). There areonly two types of graphsG(Fn−2),
namely, triangles and quadrangles, according to two types of belts with six and four facets,
respectively.

If P is m-primitive, then, form ≤ k ≤ n, G(Fk) = Kn−k+1, whereKs is the complete
graph ons vertices.

The following reformulation of canonical definity of a parallelotopeP is obvious.

Lemma 3. For a parallelotope P, the following assertions are equivalent:

(i) P is defined canonically;
(ii) q(
) = 0 for all triangles
 ⊂ GL suchthat
 = G(Fn−2). �

Call a 4-circuit(ti , t j ,−ti ,−t j ) by aquadrangleQi j . It is a parallelogram and spans a
two-dimensional plane. Among quadrangles ofGL there are quadranglesG(Fn−2), where
Fn−2 is an (n − 2)-face which is common to four parallelotopes. Obviously, for each
quadrangle, we have triviallyq(Qi j ) = qi + qj − qi − qj = 0.

The technique used in [11] can be applied for a proof ofProposition 2below (see also
Theorem 1 of [10]).

Proposition 2. Any circuit of GL can be represented as a sum modulo 2 of circuits of type
G(Fn−2).

HenceLemma 3andProposition 2imply the following lemma.

Lemma 4. For a parallelotope P, the following assertions are equivalent:

(i) P is defined canonically;
(ii) q(C) = 0 for all circuits C ⊂ GL.

But we give here an explicit proof of a weaker result which we will use later.

Lemma 5. Any quadrangleQi j can be represented as a sum modulo 2 of triangles and
quadrangles, both of type G(Fn−2).

Proof. We span a two-dimensional surfaceS on the quadrangleQi j as follows. The four
edgesti , t j , −ti and−t j form the boundary ofS. Recall that the vertices of the quadrangle
Qi j are centers of four parallelotopes, sayP(0), P(ti ), P(t j ) and P(ti + t j ). Hence
the surfaceS intersects a number of parallelotopes. We chooseS such that it intersects
boundaries of these parallelotopes only by facets and(n−2)-faces, and these intersections
are transversal. Hence if the intersectionS∩ F is not empty, then it isa segmentor a point
depending on whetherF is a facet or an(n − 2)-face, respectively.

These segments and points form a planar graphΓ drawn onS. This graphΓ has four
half-edges corresponding to the four facets intersected by the four edges ofQi j . Vertices
of Γ have degrees 3 and 4 only. The dual ofΓ is a planar subgraphG(Γ ) of the graphGL .
Minimal circuits ofG(Γ ) are just triangles and quadrangles of typeG(Fn−2). SinceG(Γ )
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is planar, each edge of it (excluding the four boundary edges) belongs to two minimal
circuits. So we obtain the wanted representation of the quadrangleQi j as a sum of graphs
G(Fn−2) modulo 2. �

7. Pegged tilings and their duals

McMullen in [9] defines a pegged tiling as follows:
A tiling {Q(t) : t ∈ T } is calledpeggedif with each tile Q(t), t ∈ T , is associated a

point v∗(t) ∈ Rn, thepegof Q(t), such that if the tile Q(t ′) is adjacent toQ(t), and so
meets it on a facetF , thenv∗(t ′) − v∗(t) is an outernormal vector toQ(t) at the facetF .
The equationxT(v∗(t ′) − v∗(t)) = α(t, t ′) defines the hyperplane supportingF .

Notethat the pegs are defined up to a shift on an arbitrary vector. Hence we can suppose
thatv∗(t0) = 0 for somet0 ∈ T .

Recall that parallelotopes form a tiling{P(t) : t ∈ L}. Suppose that thistiling is pegged.
Then the pegv∗(t) relates to the vertext of the graphGL . In particular, the pegsv∗(0) = 0,
v∗(±ti ) relate to the vertices 0,±ti , i ∈ IP, of thegraph∇G(0). Since, by definition of
pegs,v∗(ti )− v∗(0) = v∗(ti ) are proportional toqi , and since the vectorsqi are defined up
to a scalar multiple, we setqi = v∗(ti ) if the tiling {P(t) : t ∈ L} is pegged.

By definition of the lattice vectorti , thetile P(t) is adjacent to the tileP(t + ti ) by the
facetFi which is orthogonal to the facet vectorqi . Hencev∗(t + ti ) − v∗(t) = βi (t)qi for
some scalarβi (t) > 0, whereβi (0) = 1.

In Lemma 6 below, we show that such defined facet vectors give a canonical
representation of the parallelotopeP(0).

Lemma 6. The followingassertions are equivalent

(i) the tiling {P(t); t ∈ L} is pegged;
(ii) the parallelotope P= P(0) is defined canonically.

Proof. (i) ⇒ (ii) Let {ti , t j , tk} be a 3-belt such thatti = t j +tk. We show thatqi = qj +qk.
Consider the hexagon of∇G(0) corresponding to this belt. The vertices of the hexagon are
0, ±ti , ±t j and±tk. The corresponding pegs are 0,v∗(tr ) = qr andv∗(−tr ), r ∈ {i , j , k}.
All these pegs lie in the 2-plane spanned by the facet vectorsqi , qj , qk.

Consider thequadrangle with vertices 0= v∗(0), v∗(t j ), v∗(tk) andv∗(t j +tk) = v∗(ti ).
The pairs of opposite edges of this quadrangle are(v∗(t j ) − v∗(0), v∗(ti ) − v∗(tk)) and
(v∗(tk) − v∗(0), v∗(ti ) − v∗(t j )). They areparallel to the vectorsqj andqk, respectively.
Hence this quadrangle is a parallelogram. We have

qi − qk = v∗(ti ) − v∗(tk) = v∗(t j + tk) − v∗(tk) = v∗(t j ) − v∗(0) = v∗(t j ) = qj .

So, we obtain the wanted equalityqi = qj + qk. Since a similar reasoning is true for every
3-belt, we see that the parallelotopeP(0) is defined canonically.

(ii) ⇒ (i) Let P = {t0, t1, . . . , ts} be a path connecting the pointt = ts with origin
t0 = 0. Lemma 4implies thatq(P) does not depend on the pathP , i.e.q(P) = q(t). It is
easy to verify that the pointsq(t) are pegs of the tiling{P(t) : t ∈ L}, i.e.v∗(t) = q(t). �

For a pegged tiling Q = {Q(t) : t ∈ T }, it is natural to determine a tiling
Q∗ = {Q∗(t) : t ∈ T ∗} which is combinatorially and topologically dual to the tiling
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Q∗ (see [9, 10]). The combinatorial duality means that, for 0≤ k ≤ n, there isa one-to-
one correspondence betweenk-faces ofQ and(n−k)-faces ofQ∗. The topological duality
means that the affine spaces spanning the correspondingk-face ofQ and(n − k)-face of
Q∗ are orthogonal.

So, thepeg v∗(t) is a vertex of the tilingQ∗. The convex hull of all pegsv∗(t)
corresponding to tilesQ(t) ∈ Q having a fixed common vertexv is a tile Q∗(v) of Q∗,
and each tile ofQ∗ is obtained in this way. It is proved in [9] (see Theorem 3.1) thatQ∗ is
a tiling. Obviously, the dual tilingQ∗ is pegged with pegs which are vertices of the tiling
Q. Moreover, we have(Q∗)∗ = Q.

If Q is a pegged tiling by parallelotopes then the tiles of the dual tilingQ∗ are called
Delaunay polytopes. In [10], a k-face of the dual tiling is called the dual convex polytope
Dk(st).

Since the mutual dual tilingsQ andQ∗ are equivalent, we have the following obvious
assertion.

Lemma 7. The followingassertions are equivalent

(i) a tiling Q is pegged;
(ii) a tiling Q has thedual tilingQ∗.

8. Generatrissa of a tiling

For a tiling {P(t) : t ∈ L}, whose tiles are parallelotopes, Voronoi [12] defines on
the spaceRn ⊗ L a functionl (x; t). He calls this functiongeneratrissa and defines it as
follows:

(i) l (x; 0) = 0;
(ii) if P(t ′) is adjacent toP(t) by the facetFi defined by the equationqT

i x = αi , then

l (x; t ′) = l (x; t) + qT
i x − αi . (9)

(Recall that, by (2), qT
i x ≤ αi = qT

i (t + 1
2ti ) for x ∈ P(t).) In fact, Voronoi uses vectors

−qi , i ∈ IP, and therefore defines−l (x; t). Voronoi proves that for primitive canonically
defined parallelotopes the conditions (i) and (ii) above determine uniquelyl (x; t) for each
t ∈ L. Theobtained generatrissa has the following property:

l (x; t0) ≥ l (x; t) for all x ∈ P(t0) and allt0, t ∈ L, (10)

with strict inequality ifx ∈ intP(t0).
This property implies that the function

l (x) = max
t∈L

l (x; t)

is a convex piecewise affine function onRn.
Consider in(n + 1)-dimensional spaceRn ⊕ R a convex surface defined as{(x, z) :

x ∈ Rn, z = l (x)}. The mainproperty of this surface is that its projection in the space
containing the tiling{P(t) : t ∈ L} is this tiling.

But the above definition of generatrissa works for any pegged locally finite tiling (see,
for example, [9]).
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For t ∈ T , defineϕ∗(t) as follows:

(1) ϕ∗(t0) = 0;
(2) ϕ∗(t) = ∑s−1

i=0 α(t i , t i+1), wherets = t , andP(t0), P(t1), . . . , P(ts) = P(t) is a
chain such thatP(t i ) andP(t i+1), 0 ≤ i ≤ s − 1, are adjacent by a facet.

Here P(t i ) lies but P(t i+1) does not liein the halfspace{x ∈ Rn : xT(v∗(t i+1) −
v∗(t i )) ≤ α(t i , t i+1)}.

It is proved in [9] that the functionϕ∗(t) is well defined. In fact, it is sufficient to prove
that if the chainP(t0), P(t1), . . . , P(ts) = P(t0) is closed, then the sum in (2) is equal to
0. It is so if P(t i ), 0 ≤ i ≤ s − 1, have a common faceF , since, forx0 ∈ F , we have

α(t i , t i+1) = xT
0 (v∗(t i+1) − v∗(t i )), 0 ≤ i ≤ s − 1.

Now, any closed chain can be contracted to a point avoiding(n − 3)-faces, and in
contracting over an(n − 2)-face we can appeal to the above reasoning.

So, the function

f (x; t) = xTv∗(t) − ϕ∗(t) (11)

is a generatrissa such that

f (x; t) > f (x; t ′) for all x ∈ intP(t) and allt, t ′ ∈ T .

Obviously if a tiling has a generatrissa of the form (11), then this tiling is pegged. The
essential part of the papers [4] and [2] is devoted to a proof of the following proposition.

Proposition 3. The following assertions are equivalent for a tiling{Q(t) : t ∈ T }
(i) the tiling is pegged with pegsv∗(t), t ∈ T ;

(ii) the tiling has the generatrissa f(x; t) = xTv∗(t) − ϕ∗(t).

The following general result is proved in [4] and [2].

Theorem 1. If a tiling is primitive then it is pegged and has a generatrissa.

This theorem implies the main result of Voronoi [12] asserting that Voronoi’s conjecture
is true for primitive parallelotopes. The proof of Theorem 1 in [4] is similar to the proof
of Voronoi: both authors construct explicitly a generatrissa. The author of [2] constructs
explicitly pegs.

9. The case of parallelotopes

If P(0) is defined canonically, then byLemma 6the tiling {P(t) : t ∈ L} is pegged
with pegsv∗(t) = q(t). Now, byProposition 3, thetiling {P(t) : t ∈ L} by parallelotopes
has the following generatrissa:

f (x; t) = xTq(t) − ϕ∗(t).

But to obtain another equivalence and an explicit form off (x; t), we use the recursion
(9) not supposing thatP is defined canonically. We want to know, when the recursion (9)
determines uniquely the generatrissal (x; t).
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For parallelotopes, we know an explicit form ofαi in the recursion (9). In fact, since the
point t + 1

2ti belongs to the facetFi , we haveαi = qT
i (t + 1

2ti ). Hence the recursion (9)
takes the following form:

l (x; t + ti ) = l (x; t) + qT
i (x − (t + 1

2ti )). (12)

Let us have an arbitrary parallelotopeP = P(t0), and let alinear onx function l t0(x) be
given. Then, using the recursive expression (12) andgoing out froml (x; t) = l t0(x) by a
path connectingt0 with t1 = t0 + t ∈ L we can, for allt1 ∈ L, find a functionl (x; t1)

related toL.
Let t = t (P) = ∑s

k=1 tk, where(t1, t2, . . . , ts) is an arbitrary pathP in GL connecting
t0 with t1. Let q(P) = ∑s

k=1 qk, where eachqk is associated totk. Obviously, t (P) =
t1 − t0 does not depend on the pathP .

Using (12) with l (x; t) = l t0(x), andgoing along the pathP from t0 weobtain

l (x; t1) = l t0(x) + xTq(P) − φ(t0,P),

where

φ(t0,P) =
s∑

k=1

qT
k

(
t0 +

k−1∑
r=1

tr + 1
2tk

)
, (13)

and the sum
∑k−1

r=1 tr is empty for k = 1 (cf., l (x; t1) with f (x; t) in (11)).
Obviously, q(P) is additive onP . It is easy to verify that the functionφ(t0,P) is

additive on the variableP , too. In fact, letP = (t1, . . . , ts), P ′ = (ts+1, . . . , tw). We set
P + P ′ = (t1, . . . , ts, ts+1, . . . , tw). Hence the sum of two paths is its join. Lett = t (P),
t ′ = t (P ′), t1 = t0 + t = t0 +∑s

r=1 tr . Let−P = (−ts,−ts−1, . . . ,−t1) be the path from
t1 to t0 opposite toP . Then

φ(t0,P + P ′) = φ(t0,P) + φ(t1,P ′), (14)

since

φ(t0,P + P ′) =

 s∑

k=1

+
w∑

k=s+1


qT

k

(
t0 +

k−1∑
r=1

tr + 1
2tk

)

= φ(t0,P) +
w∑

k=s+1

qT
k


t0 +

s∑
r=1

tr +
k−1∑

r=s+1

tr + 1
2tk




= φ(t0,P) + φ(t1,P ′).

Now,

φ(t1,−P) =
s∑

k=1

(−qT
s+1−k)

(
t1 −

k−1∑
r=1

ts+1−r − 1
2ts+1−k

)
.
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Sincet1 = t0 +∑s
r=1 ts+1−r , for k ≤ s, we have

t1 −
k−1∑
r=1

ts+1−r = t0 +
s∑

r=1

ts+1−r −
k−1∑
r=1

ts+1−r = t0 +
s∑

r=k

ts+1−r = t0 +
s+1−k∑

r=1

tr .

If we perform the substitutions + 1 − k → k here and inφ(t1,−P; x), weobtain

φ(t1,−P) = −φ(t0,P). (15)

Let C1 = P1 + P ′, C2 = −P ′ + P2, whereP1 ∩ P2 = ∅. LetP1 go fromt0 to t1, and
the pathsP ′, P2 go fromt1 to t0. ThenC1 ⊕ C2 = P1 + P2 is the sum modulo 2.

Lemma 8.

φ(t0, C1 ⊕ C2) = φ(t0, C1) + φ(t0, C2).

Proof. Using (14) and (15), we haveφ(t0, C1) = φ(t0,P1 +P ′) = φ(t0,P1) + φ(t1,P ′)
andφ(t0, C2) = φ(t0,−P ′ + P2) = φ(t0,−P ′) + φ(t1,P2) = −φ(t1,P ′) + φ(t1,P2).
Hence

φ(t0, C1) + φ(t0, C2) = φ(t0,P1) + φ(t1,P2) = φ(t0,P1 + P2)

= φ(t0, C1 ⊕ C2). �

UsingLemmas 5and8, for any quadrangleQi j , wecan representφ(t0,Qi j ) as a sum
of functionsφ(t, G(Fn−2)).

Lemma 9. Letφ(t0,P) be given by(13). Then, for i, j ∈ IP andP = Qi j ,

φ(t0,Qi j ) = qT
j ti − qT

i t j .

Proof. Using the equality (13) for P = Qi j = (ti , t j ,−ti ,−t j ), weobtain

φ(t0,Qi j ) = qT
i (t0 + 1

2ti ) + qT
j (t

0 + ti + 1
2t j ) − qT

i (t0 + ti + t j − 1
2ti )

− qT
j (t

0 + ti + t j − ti − 1
2t j ) = qT

j ti − qT
i t j . �

Lemma 9implies the following result.

Lemma 10. Let i, j ∈ IP, and letφ(t0,P) be given by(13). The following assertions are
equivalent:

(i) φ(t0,Qi j ) = 0;
(ii) qT

i t j = qT
j ti . �

Let P = (t1, t2, . . . , ts) be a path. Recall thatt (P) = ∑s
k=1 tk, q(P) = ∑s

k=1 qk, and
I(P) is the set of all indicesi ∈ IP of ti in the pathP .

Lemma 11. Let the equalities qTi t j = qT
j ti hold for all pairs i, j ∈ I(P). Then the

functionφ(t0,P) is givenby the expression

φ(t0,P) = qT(P)(t0 + 1
2t (P)). (16)
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Proof. Using the equalitiesqT
i t j = tT

i qj for i , j ∈ I(P), weobtain the equality

qT
k

k−1∑
r=1

tr = tT
k

k−1∑
r=1

qr .

Using this equality and setting
∑s

k=1 qk = q(P), we rewriteφ(t0,P) from (13) as follows:

φ(t0,P) =
s∑

k=1

qT
k t0 + 1

2

s∑
k=1

qT
k

k−1∑
r=1

tr + 1
2

s∑
k=1

qT
k

(
k−1∑
r=1

tr + tk

)

= qT(P)t0 + 1
2

s∑
k=1

tT
k

k−1∑
r=1

qr + 1
2

s∑
k=1

qT
k

k∑
r=1

tr .

A permutation of the order of summation in the first double sum, gives

1
2

s∑
k=1

tT
k

k−1∑
r=1

qr = 1
2

s−1∑
k=1

qT
k

s∑
r=k+1

tr .

Recall that
∑s

k=1 tk = t (P). Henceφ(t0,P) takes the form

φ(t0,P) = qT(P)t0 + 1
2

s∑
k=1

qT
k

s∑
r=1

tr = qT(P)(t0 + 1
2t (P)).

So, weobtain the wanted expression.�

UsingLemma 11, wecan prove the following important result.

Lemma 12. The followingassertions are equivalent:

(i) a parallelotope P is defined canonically;

(ii) qT
i t j = qT

j ti for all i , j ∈ IP.

Proof. (i) ⇒ (ii). If P is defined canonically, thenProposition 1assert thatqT
i t j = qT

j ti
for i , j ∈ I(G(Fn−2)). Obviously, q(Qi j ) = 0, and byLemma 3, q(
) = 0 if

 = G(Fn−2). Henceq(G(Fn−2)) = 0 andLemma 11implies thatφ(t0, G(Fn−2)) = 0.
Lemma 5asserts that each quadrangleQi j is a sum modulo 2 of circuitsG(Fn−2). By
Lemma 8weobtain thatφ(t0,Qi j ) = 0. Now,Lemma 10gives thewanted equality for all
pairsi , j .

(ii) ⇒ (i) By Lemma 2, qi = Dti for all i ∈ IP. Hence any linear equality between
lattice vectors implies the corresponding equality between the associated facet vectors.
This implies that the facet vectors are defined canonically with respect to each belt ofP,
i.e., P is defined canonically. �

The obtained functionφ(t0,P) depends on the chosen pathP . Sinceφ(t0,P) satisfies
the condition (15), it does not depend onP if and only if φ(t0, C) = 0 for every circuit C.
In Lemma 13below we give conditions when this property is true.
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Lemma 13. LetC be a circuit and t0 ∈ C. The following assertions are equivalent:

(i) for all t 0 and all circuitsC � t0, the functionφ(t0, C) = 0;
(ii) the equalities qTi t j = qT

j ti hold for all pairs i, j ∈ IP.

Proof. (i) ⇒ (ii) The item (i) implies thatφ(t0,Qi j ) = 0 for any quadrangleQi j . Now
Lemma 10gives the wanted implication.

(ii) ⇒ (i) Recall that if qT
i t j = qT

j ti for all i , j ∈ IP, thenqi = Dti . Sincethe
sum

∑s
k=1 tk = t (C) = 0 for any circuit C, the associated vectorq(C) = ∑s

k=1 qk =∑s
k=1 Dtk = Dt (C) is also equal to zero. Henceφ(t0, C) = qT(C)(t0 + 1

2t (C)) = 0. �

10. Generatrissa for parallelotopes

By Lemma 13the generatrissal (x; t) = qT(t)(x − 1
2t) is uniquely determined for all

x ∈ Rn and t ∈ L. This is the functionqT(P)x − φ(0,P), whereq(P) = q(t) and
φ(0,P) = 1

2qT(t)t , both do not depend onP . In other words, wehave the following
assertion:

Lemma 14. The followingassertions are equivalent:

(i) the function qT(t)(x − 1
2t), t ∈ L, is the generatrissa of the tiling obtained by

translationsof a parallelotope P;
(ii) the equalities qTi t j = qT

j ti hold for all i, j ∈ IP. �

Recall that the facet vectorq(t) is associated to the lattice vectort , when (8) is true.
Hence, byLemma 2, q(t) = Dt and we see thatl (x; t) is given by

l (x; t) = tT D(x − 1
2t).

We see thatl (x; 0) = 0. Using standard arguments of [12] and [13], one can prove
that l (x; t) ≤ 0 for all x ∈ P(0) and all t ∈ L, with strict inequality forx ∈ intP(0).
Hence (10) (with t0 = 0) is true. ButLemma 2does not assert that the matrixD is positive
definite. The next lemma proves thatD is positive definite if the vectorsqi andti are related
to a parallelotope.

Lemma 15. Let P(0) be a parallelotope with center in origin, and let(8) be true. Let D
be a non-singular matrix. The following assertions are equivalent:

(i) the inequality l(x; t) = tT D(x − 1
2t) < 0 holds for all x ∈ intP(0) and all t ∈ L,

t �= 0;
(ii) the matrix D is positive definite.

Proof. (i) ⇒ (ii) For x = 0 andt �= 0, we have−l (0; t) = 1
2tT Dt > 0. This inequality

holds for all vectorst ∈ L − {0}. Any rational combination of basic vectors ofL is equal
to 1

p t for somet ∈ L and an integerp. We obtain that the above inequality holds also for
rational vectors. By continuity, this inequality holds for allt ∈ Rn. This implies, that the
matrix D is positive definite.
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(ii) ⇒ (i) Let D be positive definite. Consider the quadratic functionxTDx−2l (x; t) =
(x−t)T D(x−t) = f (x−t). Using thequadratic formf (x) we can define theparallelotope

Pf (t
0) = {x ∈ Rn : l (x; t0) − l (x; t) ≥ 0, t ∈ L}.

We show thatPf (t0) = P(t0). Then for t0 = 0 we will have l (x; t) ≤ 0, t ∈ L − {0}, and
l (x; t) < 0 for interiorpoints ofP(t0). Theinfinite system inequalities

l (x; t0) − l (x; t) ≥ 0, t ∈ L,

contain the subsystem fort = t0 ± ti , i ∈ IP, describing the parallelotopeP(t0) of
type (2). HencePf (t0) ⊆ P(t0) for every t0 ∈ L. But we have here an equality. In
fact, if there ist ∈ L suchthat Pf (t) ⊂ P(t) strictly, then there is an adjacent toPf (t)
parallelotopePf (t ′) suchthat Pf (t ′) andP(t) have a common interior point. SinceP(t ′)
containsPf (t ′), theparallelotopesP(t) andP(t ′) have a common interior point. This is a
contradiction. �

The above proof ofLemma 15is also a proof of the following.

Lemma 16. The followingassertions are equivalent

(i) the parallelotope P is a Voronoi polytope with respect to the positive quadratic form
f (x) = xTDx;

(ii) the function l(x; t) = tT D(x − 1
2t) is a generatrissa of the tiling{P(t) : t ∈ L}.

11. Main theorem

If we collectLemmas 1, 2, 6 and7, Proposition 3andLemmas 12, 14 and16 together,
we obtain the following.

Theorem 2. Let P be a parallelotope defined by facet vectors qi , and defining lattice
vectors ti , i ∈ IP. Let A be a non-degenerate n× n matrix, and D = AT A. Then the
following assertions are equivalent:

(i) Voronoi’s conjecture holds for P, i.e. the affine transformation x→ Ax transforms
theparallelotope P into a Voronoi polytope;

(ii) the parallelotope P is a Voronoi polytope with respect to the positive quadratic form
f (x) = xTDx;

(iii) theparallelotope P is defined canonically;
(iv) the equality qi = Dti holds for all i ∈ IP;
(v) for all pairs i, j ∈ IP, theequalities tTi qj = qT

i t j hold;
(vi) the tiling {P(t) : t ∈ L} is pegged withpegsv∗(t) = Dt;
(vii) the function l(x; t) = tT D(x − 1

2t) is a generatrissa of the tiling{P(t) : t ∈ L};
(viii) the tiling {P(t) : t ∈ L} has a dualtiling.

Theorem 2implies a result of [6] that there is a unique (up to isomorphism ofP) map
which transforms a primitive parallelotopeP into a Voronoi polytope. OurTheorem 2
gives an explicit matrix A of the corresponding affine map. Therefore we have the
following.
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Proposition 4. If a parallelotope P is affinely equivalent to a Voronoi polytope, then this
affinity is uniquely (up to the aftomorphism of P) determined by the parallelotope P.
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