130 research outputs found

    The BioPAX community standard for pathway data sharing

    Get PDF
    Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery

    Modeling cellular processes with PATÄ°KA

    Get PDF
    Ankara : The Department of Molecular Biology and Genetics and the Institute of Engineering and Science of Bilkent University, 2001.Thesis (Master's) -- Bilkent University, 2001.Includes bibliographical references leaves 49-51Availability of the sequences of entire genomes shifts the scientific curiosity toward the identification of function of the genomes in large scale as in genome studies. In the near future data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. We define an ontology for a comprehensive representation of cellular events. The model presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporations of the stored data, as well as multiple levels of abstraction. Based on this model, we present an integrated environment named PATIKA (Pathway Analysis Tool for Integration and Knowledge Acquisition). PATIKA is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that PATIKA will be a valuable tool for rapid knowledge acquisition; micro array generated large-scale data interpretation; disease gene identification and drug developmentDemir, EmekM.S

    Systems Biology Graphical Notation: Entity Relationship language Level 1 (Version 1.2)

    Get PDF
    Standard graphical representations have played a crucial role in science and engineering throughout the last century. Without electrical symbolism, it is very likely that our industrial society would not have evolved at the same pace. Similarly, specialised notations such as the Feynmann notation or the process flow diagrams did a lot for the adoption of concepts in their own fields. With the advent of Systems Biology, and more recently of Synthetic Biology, the need for precise and unambiguous descriptions of biochemical interactions has become more pressing. While some ideas have been advanced over the last decade, with a few detailed proposals, no actual community standard has emerged. The Systems Biology Graphical Notation (SBGN) is a graphical representation crafted over several years by a community of biochemists, modellers and computer scientists. Three orthogonal and complementary languages have been created, the Process Descriptions, the Entity Relationships and the Activity Flows. Using these three idioms a scientist can represent any network of biochemical interactions, which can then be interpreted in an unambiguous way. The set of symbols used is limited, and the grammar quite simple, to allow its usage in textbooks and its teaching directly in high schools. The current document presents version 1.2 of the first level of the SBGN Entity Relationship language. Shared by the communities of biochemists, genomicians, theoreticians and computational biologists, SBGN languages will foster efficient storage, exchange and reuse of information on signaling pathways, metabolic networks and gene regulatory maps

    Systems Biology Graphical Notation: Process Description language Level 1

    Get PDF
    Standard graphical representations have played a crucial role in science and engineering throughout the last century. Without electrical symbolism, it is very likely that our industrial society would not have evolved at the same pace. Similarly, specialised notations such as the Feynmann notation or the process flow diagrams did a lot for the adoption of concepts in their own fields. With the advent of Systems Biology, and more recently of Synthetic Biology, the need for precise and unambiguous descriptions of biochemical interactions has become more pressing. While some ideas have been advanced over the last decade, with a few detailed proposals, no actual community standard has emerged. The Systems Biology Graphical Notation (SBGN) is a graphical representation crafted over several years by a community of biochemists, modellers and computer scientists. Three orthogonal and complementary languages have been created, the Process Diagrams, the Entity Relationship Diagrams and the Activity Flow Diagrams. Using these three idioms a scientist can represent any network of biochemical interactions, which can then be interpreted in an unambiguous way. The set of symbols used is limited, and the grammar quite simple, to allow its usage in textbooks and its teaching directly in high schools. The first level of the SBGN Process Diagram has been publicly released. Software support for SBGN Process Diagram was developed concurrently with its specification in order to speed-up public adoption. Shared by the communities of biochemists, genomicians, theoreticians and computational biologists, SBGN languages will foster efficient storage, exchange and reuse of information on signalling pathways, metabolic networks and gene regulatory maps

    Systems Biology Graphical Notation: Process Diagram Level 1

    Get PDF
    Standard graphical representations have played a crucial role in science and engineering throughout the last century. Without electrical symbolism, it is very likely that our industrial society would not have evolved at the same pace. Similarly, specialised notations such as the Feynmann notation or the process flow diagrams did a lot for the adoption of concepts in their own fields. With the advent of Systems Biology, and more recently of Synthetic Biology, the need for precise and unambiguous descriptions of biochemical interactions has become more pressing. While some ideas have been advanced over the last decade, with a few detailed proposals, no actual community standard has emerged. The Systems Biology Graphical Notation (SBGN) is a graphical representation crafted over several years by a community of biochemists, modellers and computer scientists. Three orthogonal and complementary languages have been created, the Process Diagrams, the Entity Relationship Diagrams and the Activity Flow Diagrams. Using these three idioms a scientist can represent any network of biochemical interactions, which can then be interpreted in an unambiguous way. The set of symbols used is limited, and the grammar quite simple, to allow its usage in textbooks and its teaching directly in high schools. The first level of the SBGN Process Diagram has been publicly released. Software support for SBGN Process Diagram was developed concurrently with its specification in order to speed-up public adoption. Shared by the communities of biochemists, genomicians, theoreticians and computational biologists, SBGN languages will foster efficient storage, exchange and reuse of information on signalling pathways, metabolic networks and gene regulatory maps

    Lean manufacturing: Trends and implementation issues

    Get PDF
    Many manufacturing cost reduction initiatives have been introduced over past three decades including lean manufacturing. Waste reduction and efficiency improvement are the main objectives of this initiative. It is developed from a set of tools and techniques and can fit nicely in cost focus or cost leadership competitive advantage strategies. But, keeping competitive advantage under the market circumstances are getting harder with growth of production quantity and product diversity. Therefore, paper's focus is lean manufacturing implementation trends and issues within the various manufacturing sector. Successes and failures of implementation of lean manufacturing in some industries are discussed. It was found that lean principles are good source of competitive advantage, it is applicable for many industries and its expansion and discussion are significantly progressing. The biggest threat in implementing lean is lack of understanding the concept but those who engage consultants were more successful

    Pathway Commons, a web resource for biological pathway data

    Get PDF
    Pathway Commons (http://www.pathwaycommons.org) is a collection of publicly available pathway data from multiple organisms. Pathway Commons provides a web-based interface that enables biologists to browse and search a comprehensive collection of pathways from multiple sources represented in a common language, a download site that provides integrated bulk sets of pathway information in standard or convenient formats and a web service that software developers can use to conveniently query and access all data. Database providers can share their pathway data via a common repository. Pathways include biochemical reactions, complex assembly, transport and catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. Pathway Commons currently contains data from nine databases with over 1400 pathways and 687ā€‰000 interactions and will be continually expanded and updated

    Meeting report from the first meetings of the Computational Modeling in Biology Network (COMBINE)

    Get PDF
    The Computational Modeling in Biology Network (COMBINE, http://co.mbine.org/), an initiative whose goal is to coordinate the development of the various community standards and formats in computational systems biology and related fields. This report summarises the activities pursued at the first annual COMBINE meeting held in Edinburgh on October 6-9 2010 and the first HARMONY hackathons, held in New-York on April 18-22 2011. The first of those meetings hosted 81 attendees, and discussions covered not only the standards part of COMBINE such as BioPAX, SBGN and SBML, but emerging efforts and interoperability between the different formats. The second meeting, oriented towards developers, welcomed 59 participants and witnessed many technical discussions and development enhancing software support of the standards, and conversion between them. Both meetings were resounding successes and showed that the field is now mature enough to develop representation formats and related standards in a coordinated manner

    Self-assembled semiconductor microlaser based on colloidal nanoplatelets

    Get PDF
    A semiconductor microsphere laser based on colloidal nanoplatelets is demonstrated comprising a micron-sized supraparticle obtained by self-assembly of core/shell CdSe/ CdS nanoplatelets with peak luminescence at 660nm. It shows multimode laser emission between 665 and 695nm with threshold at 200 nJ (28 Ā± 17 mJ.cm -2 )

    Discovering modulators of gene expression

    Get PDF
    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, proteinā€“protein interactions and transcription factorā€“target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes
    • ā€¦
    corecore