1,813 research outputs found

    The measurement of a single-mode thermal field with a microwave cavity parametric amplifier

    Get PDF
    In this paper, we present the experimental study of a single-mode thermal field carried out using a microwave parametric amplifier tuned at 1.5 GHz and working at room temperature. The parametric amplifier is based on a variable capacitance diode placed inside a microwave resonant cavity. The measured distribution of the thermal photons inside the resonator follows the expected Bose–Einstein distribution probability

    Experimental perspectives in (low-energy) photon-photon scattering

    Get PDF
    The possibility of photon-photon scattering is a striking difference between classical and quantum electrodynamics. This genuinely quantum feature is made possible by the fluctuations of charged fields, and it makes quantum vacuum a nonlinear optical medium. Photon-photon scattering is thus a delicate probe into the structure of quantum electrodynamics and any departure from the expected behavior would be a powerful signal of "new physics". To date this process has never been observed – except as a radiative correction to other processes – and several experiments are trying to detect it at very low energy, in the scattering of real photons in powerful light beams off the virtual photons of intense magnetic fields. Here we briefly review the experimental state-of-the-art, with special emphasis on the PVLAS experiment, and we describe a new proposal to observe photon-photon scattering in the range 1 – 2 MeV

    MITS: the Multi-Imaging Transient Spectrograph for SOXS

    Get PDF
    The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument

    Optical design of the SOXS spectrograph for ESO NTT

    Full text link
    An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the '4C' design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions describing the SOXS design and properties as it is about to face the Final Design Review.Comment: 9 pages, 9 figures, published in SPIE Proceedings 1070

    The VIS detector system of SOXS

    Get PDF
    SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous ow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions.Comment: 9 pages, 13 figures, to be published in SPIE Proceedings 1070

    The Acquisition Camera System for SOXS at NTT

    Full text link
    SOXS (Son of X-Shooter) will be the new medium resolution (R\sim4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.Comment: 9 pages, 7 figures, SPIE conferenc

    Lunar Gravitational-Wave Antenna

    Get PDF
    Monitoring of vibrational eigenmodes of an elastic body excited by gravitational waves was one of the first concepts proposed for the detection of gravitational waves. At laboratory scale, these experiments became known as resonant-bar detectors first developed by Joseph Weber in the 1960s. Due to the dimensions of these bars, the targeted signal frequencies were in the kHz range. Weber also pointed out that monitoring of vibrations of Earth or Moon could reveal gravitational waves in the mHz band. His Lunar Surface Gravimeter experiment deployed on the Moon by the Apollo 17 crew had a technical failure rendering the data useless. In this article, we revisit the idea and propose a Lunar Gravitational-Wave Antenna (LGWA). We find that LGWA could become an important partner observatory for joint observations with the space-borne, laser-interferometric detector LISA, and at the same time contribute an independent science case due to LGWA's unique features. Technical challenges need to be overcome for the deployment of the experiment, and development of inertial vibration sensor technology lays out a future path for this exciting detector concept.Comment: 29 pages, 17 figure
    corecore