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Abstract. In this paper, we present the experimental study of a single-mode
thermal field carried out using a microwave parametric amplifier tuned at
1.5 GHz and working at room temperature. The parametric amplifier is based
on a variable capacitance diode placed inside a microwave resonant cavity. The
measured distribution of the thermal photons inside the resonator follows the
expected Bose–Einstein distribution probability.
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1. Introduction

In our effort to study the dynamical Casimir effect [1, 2], we have built a parametric amplifier
based on a microwave resonant cavity whose proper frequency can be modulated by means of
a variable capacitance diode (varicap). By a proper tuning of the varicap, an extremely large
gain can be obtained, thus allowing one to measure the very small amounts of thermal energy
contained in a very narrow frequency band.

The properties of thermal radiation are generally described by applying the laws of
statistical mechanics to the radiation in equilibrium at temperature T [3]. The radiation consists
of a continuum spectrum of modes whose energy density is described by Planck’s formula.
When analyzing radiation inside a high-Q resonator, we have to consider that only a single
mode of the field is possible, i.e. only photons with energy E around hνr, with νr the resonance
frequency of the cavity, are present. When the mode is populated by n photons, the energy of
the mode is En = (n + 1/2)hνr. The probability Pν(n) of finding n photons in the cavity is then

Pν(n) =
1

n̄ + 1

(
n̄

n̄ + 1

)n

, (1)

where n̄ is the mean photon number

n̄ = [exp(hνr/kBT ) − 1]−1. (2)

Equation (1) is the Bose–Einstein distribution, having the peculiar characteristic of being super-
Poissonian, with variance (1n)2

= n̄(1 + n̄).
The Planck spectrum has been measured several times with extremely high accuracy, the

most remarkable measurement being the cosmic microwave background [4]. This is not the
case for the single-mode photon distribution, described by (1), since when selecting a very
narrow frequency band the number of photons is reduced below detectability. On the other
hand, enlarging the measurement band will soon spoil the single mode, reducing its variance
as (1n)2

= n̄ (1 + n̄/µ), with µ the number of modes. These are the reasons why only a few
measurements of the Bose–Einstein distribution have been made [5, 6], but with an average
number of photons n̄∼1 and with apparatuses that can work only in a very limited temperature
range.

In this paper, we present our experimental study of a super-Poissonian single-mode thermal
field with n̄∼103. The measured distribution of the thermal photons inside the resonator follows
the distribution probability (1). This measurement was possible due to a novel type of parametric
amplifier having an extremely large amplitude gain and high frequency selectivity.
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Figure 1. The principle scheme of the microwave parametric amplifier. The
copper resonant cavity is kept inside a cryogenic system that can be used both
at liquid nitrogen and at liquid helium. The varicap (Macom Ma 46470-91) is a
cylinder with about 2.4 mm height and 1 mm diameter.

2. The experimental apparatus

The principle experimental scheme of the apparatus is shown in figure 1. It is a much improved
version of the waveguide parametric amplifiers built mainly in the 1960s [7]. A detailed
description will be given elsewhere [8]. It is based on a reentrant geometry microwave resonant
cavity with circular section, with a diameter of 42 mm and a height of 50 mm. Its resonance
frequency νr is about 1.5 GHz, with a quality factor Q = πνrτc ≈ 200 (τc is the field decay
time). The reentrant cylinder, having a diameter of 4 mm, leaves a 5.2 mm gap in front of one
of the cavity ends. This gap almost entirely determines the capacitance Cr of the equivalent
circuit of the resonator. In front of the reentrant cylinder, a varicap is mounted, with a zero bias
capacity of 1.5 pF. The varicap can be seen as a capacitance added in series to Cr to give a total
capacitance C ′

r and hence a different value of the resonance frequency. By driving the varicap
with an ac voltage it is thus possible to periodically modulate the resonance frequency of the
system, and the modulation depth strongly depends on the position of the varicap itself inside
the resonator.

By using the three ports P1, P2 and P3, it is possible to charge the cavity, to measure the
stored energy and to drive the capacitance of the varicap, respectively. Port P1 holds a weakly
coupled antenna with a coupling k1 ∼ −37 dB. The antenna is connected to the oscillator RF-I
used to charge up the microwave cavity in the calibration measurements. Port P2 holds a second
antenna whose position can be varied to obtain critical coupling. This antenna is connected to
the 50 � input of a 6 GHz bandwidth oscilloscope. If the energy in the cavity is constant, the
antenna delivers a stationary signal onto the oscilloscope. An ac signal applied by the oscillator
RF-P through port P3 is used to drive the varicap. The two oscillators RF-I and RF-P are gated
by the pulse generator (PG); the relative phase of their outputs is controlled by a phase locking
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system, permitting a complete characterization of the parametric amplification process also at
very large gain.

By driving the varicap at a frequency ≈2νr, a parametric amplification of the energy stored
in the resonator can be realized. In this case, the signal on the scope has an exponential-like
growth. The growth rate depends on the efficiency of the parametric process, and deviates
toward saturation in a short time. As we do not work in a saturation regime, the oscillator RF-P
is activated only for a limited amount of time. We study the time behavior of the amplitude Va at
frequency νr of the antenna signal on port P2 when the pump RF-P is present. The output power
is then Pout = V 2

a /(2Rg), for a corresponding energy in the cavity

Ecavity =
1

k2
Poutτc =

1

k2

V 2
a τc

2Rg
. (3)

For a critically coupled antenna the coefficient k2 is equal to unity. Analogously, for the input
port, the energy loaded in the cavity is Ecavity = Pinsc/k1, with Pin the power delivered by the
oscillator RF-I.

The general trigger for a measurement is the leading edge of a square pulse of the PG; this is
a TTL signal with a duration of about 10 µs that enables the output of the pump oscillator RF-P
and starts the acquisition by the oscilloscope. When performing calibrations with a known input
on port P1, the oscillator RF-I is switched off at the start of the pump signal in order not to have
a stationary input in the cavity during amplification. The acquisition system of the oscilloscope
limits the repetition rate of the measurements to about 10 Hz, which ensures also that the cavity
is again in a stationary state next time the pump is switched on.

3. The amplification process

Let us consider a resonant microwave cavity with unperturbed resonance frequency νr = ωr/2π ,
quality factor Q, and field decay time τc = 1/λ. To produce a parametric amplification process,
we modulate the resonance frequency following the relation

νr(t) = νr[1 + η cos 2(ωrt + θ)], (4)

where η is the modulation depth, t = 0 is the time at which the modulation begins and 2θ the
pump initial phase. In the absence of dissipation, the evolution of the electromagnetic field
amplitude inside the resonator will exhibit an exponential growth of the type est [9], with rate
s = πηνr. In the presence of dissipation, the rate will be diminished by an amount λ. The power
output measured by the antenna on port P2 can be described approximately by the following
equation:

Pout(t) ≈ Pout(0)et/τp g(θ − φ)

≈ Pout(0)e2(s−λ)t g(θ − φ) for t>0, (5)

where φ is the phase of the cavity field at t = 0 and the factor two in the exponent is due to
the change from field to power. In the following, we present evidence that the phase function
g(θ − φ) can be written simply as cos2(θ − φ + constant). The time constant τp = [2(s − λ)]−1

is the characteristic time of the amplification process. The exponential growth in equation (5)
cannot last for ever, and the amplitude of the field saturates to a value related to the physical
characteristics of the electrical components. For our purposes, the saturation part of Pout(t) is
not used.
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Figure 2. Histogram of 1000 values of tT for a fixed value of Pin, with PT =

25 µW, and having maximized the phase function g(θ − φ). The fitting curve is
a Gaussian function, showing a standard deviation of 15 ns with an average value
of 5.765 µs.

Measurements are made as follows: an arbitrary value PT is chosen so that the saturation
part of Pout(t) begins well after this value is reached. The time tT , at which Pout(tT ) = PT ,
determines the amplifier gain, and in principle it is possible to deduce the initial amplitude
Pout(0) by just reversing equation (5). Unfortunately, due to the presence of the phase function
g(θ − φ), this is not always feasible: while the initial phase θ can be chosen at will, the phase
φ can only be determined when the cavity field is driven using the oscillator RF-I on port P1,
thanks to the phase locking between the input signal and the pump. In this case, the phase φ

can be easily tuned and the function g(θ − φ) maximized: the value of Pout is then uniquely
determined by Pin through relation (3). The time tT is

tT = τp

[
ln

PT

Pout(0)
− ln g(θ − φ)

]
. (6)

In figure 2 a histogram of 1000 values of tT is shown. These measurements are made with
a constant input Pin, having maximized the phase function g(θ − φ), and with PT = 25 µW.
Making several measurements like those of figure 2 at different values of Pin allows for a
precise determination of the characteristic time τp of the parametric amplification process. The
results of such measurements are shown in figure 3, fitted using (6). The resulting value is
τp = (13.9 ± 0.2) ns. The parameter τp gives the temporal difference in tT between two power
inputs whose ratio is e; its value does not depend on the choice of the experimental parameters
PT , k1 and k2.

As can be seen from figure 3, the time tT is stable for input power below a certain value: this
indicates that inside the resonator there is a source that cannot be switched off. This source has to
be identified with the thermal bath. We will see below that it is possible to determine the energy
spectrum and phase distribution of the signal assuming a thermal source as the input. Before
doing this, we have to study the phase function g(θ − φ). In fact, when doing calibrations,
the phase is adjusted to give a maximum of the phase function, but when the parametric
process acts upon a signal with random phase, the effect of the function g(θ − φ) must be
taken into account. In order to resolve this point, measurements of tT have been made keeping
Pin fixed and varying the phase φ of the oscillator RF-I. These results are shown in figure 4.
The experimental points have been fitted through equation (6) using g(θ − φ) = cos2(θ − φ),
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Figure 3. Calibration of the gain parameter τp. For all the data PT = 25 µW. The
four points on the left were not used in the fit. We find that τp = (13.9 ± 0.2) ns.

Figure 4. Determination of the phase function. Experimental points are fitted
using the function τp ln cos2(θ − φ) + constant. A value τp = (14.3 ± 1.1) ns is
found.

leaving θ as a free parameter. The result of the fit is good, with a reduced χ 2
= 0.1, and the

gain parameter obtained, τp = (14.3 ± 1.1) ns, is in agreement with that of the calibration (see
figure 3). The results prove the validity of the approximation used in equation (5), i.e. the
parametric process is approximated well by an exponential growth. The total gain can reach
very large values: for example, in the leftmost data point in figure 3, the initial output power is
about Pout(0) = 1 × 10−13 W for a total gain of about 2.5 × 108.

From the measured value of τp, we can obtain the modulation depth η. Knowing that
τc = 40 ns, we obtain s ≈ 6 × 107 Hz and hence η ≈ 1.2 × 10−2. This value was obtained with
a 13 dBm output level on the oscillator RF-P. Within our setup it is not possible to measure the
exact value of the ac component Vpump of the RF driving voltage of the varicap, essentially
due to the difficulty in obtaining correct impedance matching between the varicap and the
feeding line, with the result that most of the driving power is actually reflected. The linearity
of η on the pump was roughly verified for small variations of Vpump. We also verified that the
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Figure 5. (Continuous line) 11 000 measurements of tT , taken at room
temperature, with no input on cavity port P1 and PT = 100 µW. (Dashed line)
MC simulation of the data assuming a single-mode thermal spectrum in the
cavity at t = 0. In the simulation the only free parameter is a common time t0

added to all the generated values.

parametric process is present only when the driving frequency has values in a narrow interval
centered on 2νr.

4. The thermal photon bath

As seen above, the parametric amplification process takes place and reaches saturation even
when the input power Pin is reduced to zero. In this case, the distribution of the time tT is no
longer Gaussian and has greater variance. In figure 5 the continuous line is a histogram of 11 000
values of tT measured at room temperature with the oscillator RF-I kept constantly off; for these
data the characteristic time obtained with the calibration procedure is τp = (84.0 ± 1.2) ns, with
a cavity decay time τc = 18 ns (cavity Q is reduced in this measurement owing to a change
of the antenna geometry to optimize coupling). After the oscillator RF-P is turned on, the
system reaches the value PT in a time dependent on the energy present in the cavity and on
the phase φ of the internal field. We will show that the spectrum reflects the presence of the
single-mode thermal photon distribution described by relation (1). To this end, we performed
a Monte Carlo (MC) simulation of the parametric process: we generated 1.1 × 106 values of
tT assuming that the energy present in the cavity at the starting trigger has the probability
distribution given by equation (1) and that the phase φ has a flat distribution in the interval
[0 − 2π ]. The generated values are arranged in a histogram as the measured data, rescaling
for the total number of samples (dashed line in figure 5). One can say that the simulation is
done without free parameters: τp is measured in the calibration procedure, τc comes from the
cavity characterization, k2 is measured with a vector analyzer, PT is a common choice both
for calibration and thermal data, and finally n̄ = 4164 is determined from equation (2) with
T = 300 K. By adding a value t0 to all the generated times, it is possible to superimpose the
simulated and the experimental data. It is clear that adding a constant value to all the points
does not affect the shape of the distribution, which reproduces the experimental data quite

New Journal of Physics 15 (2013) 013044 (http://www.njp.org/)

http://www.njp.org/


8

satisfactorily. One reason for the presence of the constant t0 can be found in the uncertainty
on the parameter k2. An error in this parameter results exactly in a constant added to tT (cf (3)
and (6)). A χ2 test for the simulated and the real data gives a total χ2

= 27 for the first 29 bins of
the histogram, thus indicating that the chosen hypotheses are consistent with the experimental
data.

In order to check that the distribution is due to a single-mode thermal field, we repeated
the analysis assuming for the initial field a thermal distribution with a number of modes equal
to µ [10]:

Pν(n) =
(n + µ − 1)!

(µ − 1)!n!

1

[1 + n̄/µ]µ[1 + µ/n̄]n
. (7)

Already with µ = 2, i.e. supposing to have two field modes resonating in the cavity, it was not
possible to obtain a good description of the experimental data, with the χ2 in excess of 100.
This proves that no standard distribution but the Bose–Einstein can be used to fit the data.

The width of the curve of figure 5 depends strongly on the type of energy distribution in
the cavity and, given that, mainly on the gain parameter τp. In the case of the distribution of
equation (1) such a width changes very slightly with temperature. This is related to the fact
that the Bose–Einstein distribution can always be approximated by an exponential curve if the
average photon number is much larger than 1. This very slight dependence of the shape on
temperature and the presence of t0 seem to put a limit on the determination of the absolute
temperature of the thermal photon bath inside the resonator from measured values of tT , at least
for temperatures well above absolute zero.

The system has also been tested at cryogenic temperatures, with the cavity placed in a
cryostat filled with either liquid nitrogen (T ≈ 77 K) or liquid helium (T ≈ 5 K). The operation
of the varicap is not prevented by low temperature and the measured spectra are fitted well
by following the same procedure used for the room temperature one. However, due to the
uncertainties present in the determination of the temperature of the photon bath, it was not
possible to verify whether the measured spectra were due to photons in thermal equilibrium
with the cavity wall or to some heat leakage into the cavity, for example through the critically
coupled antenna. We are currently working to solve this problem.

5. Conclusions

In conclusion, we have built a parametric amplifier based on a microwave resonant cavity with
the resonance frequency driven by a varicap. With this amplifier, we have studied the thermal
field inside the cavity. By using MC simulation, we have reproduced the experimental result with
the hypothesis of a single-mode thermal field inside the resonator, described by a Bose–Einstein-
type probability distribution. The description of the energy spectrum inside the cavity in terms
of the Bose–Einstein distribution is a proof of the quantum behavior of thermal radiation.
Moreover, the energy spectrum is measured at room temperature, i.e. with a large number of
photons (∼103). Other proofs of the quantum character of thermal radiation at high temperature
were obtained by measuring the thermal corrections of the Casimir [11] and Casimir–Polder
forces [12].

The system presented in this paper proves to be a powerful and versatile tool for the
measurement of very small signals. Our result could pave the way for the measurement of
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the dynamical Casimir effect [1, 2, 13, 14], finding also possible applications in the studies of
the statistics of photons emitted by conductors [15] and of squeezed thermal radiation [16].
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