20 research outputs found

    Integrated assessment of contaminants and monitoring of an urbanized temperate harbor (Montevideo, Uruguay): a 12-year comparison

    Get PDF
    AbstractSituated opposite the Freshwater Front, Montevideo city with its more than 1.5 million inhabitants encircles Montevideo Bay, where one of the most active and polluted harbors in South America is located. Faecal sterols, trace metals, organochlorine compounds and petroleum derivatives in the sediments of Montevideo Harbor were evaluated and their spatial distribution inside the harbor as well as in the input of two main tributary streams analyzed. Specifically for the harbor sites, a temporal comparison of metal and hydrocarbons was made with previous measurements taken 12 years ago. Clear changes were observed at these sites. The concentration of metals such as Pb, Cr and Zn have diminished, while aliphatic hydrocarbons have increased their values at almost all of the stations studied. Differences were observed between summer and winter suggesting sedimentation, input or hydrodynamic changes in the area. These results help one to understand the present situation and develop the management measures needed to improve the environmental quality of the harbor and bay

    GLOSSary: The GLobal Ocean 16S subunit web accessible resource

    No full text
    Abstract Background Environmental metagenomics is a challenging approach that is exponentially spreading in the scientific community to investigate taxonomic diversity and possible functions of the biological components. The massive amount of sequence data produced, often endowed with rich environmental metadata, needs suitable computational tools to fully explore the embedded information. Bioinformatics plays a key role in providing methodologies to manage, process and mine molecular data, integrated with environmental metagenomics collections. One such relevant example is represented by the Tara Ocean Project. Results We considered the Tara 16S miTAGs released by the consortium, representing raw sequences from a shotgun metagenomics approach with similarities to 16S rRNA genes. We generated assembled 16S rDNA sequences, which were classified according to their lengths, the possible presence of chimeric reads, the putative taxonomic affiliation. The dataset was included in GLOSSary (the GLobal Ocean 16S Subunit web accessible resource), a bioinformatics platform to organize environmental metagenomics data. The aims of this work were: i) to present alternative computational approaches to manage challenging metagenomics data; ii) to set up user friendly web-based platforms to allow the integration of environmental metagenomics sequences and of the associated metadata; iii) to implement an appropriate bioinformatics platform supporting the analysis of 16S rDNA sequences exploiting reference datasets, such as the SILVA database. We organized the data in a next-generation NoSQL “schema-less” database, allowing flexible organization of large amounts of data and supporting native geospatial queries. A web interface was developed to permit an interactive exploration and a visual geographical localization of the data, either raw miTAG reads or 16S contigs, from our processing pipeline. Information on unassembled sequences is also available. The taxonomic affiliations of contigs and miTAGs, and the spatial distribution of the sampling sites and their associated sequence libraries, as they are contained in the Tara metadata, can be explored by a query interface, which allows both textual and visual investigations. In addition, all the sequence data were made available for a dedicated BLAST-based web application alongside the SILVA collection. Conclusions GLOSSary provides an expandable bioinformatics environment, able to support the scientific community in current and forthcoming environmental metagenomics analyses

    Simultaneous Recovery of RNA and DNA from Soils and Sediments

    No full text
    Recovery of mRNA from environmental samples for measurement of in situ metabolic activities is a significant challenge. A robust, simple, rapid, and effective method was developed for simultaneous recovery of both RNA and DNA from soils of diverse composition by adapting our previous grinding-based cell lysis method (Zhou et al., Appl. Environ. Microbiol. 62:316–322, 1996) for DNA extraction. One of the key differences is that the samples are ground in a denaturing solution at a temperature below 0°C to inactivate nuclease activity. Two different methods were evaluated for separating RNA from DNA. Among the methods examined for RNA purification, anion exchange resin gave the best results in terms of RNA integrity, yield, and purity. With the optimized protocol, intact RNA and high-molecular-weight DNA were simultaneously recovered from 19 soil and stream sediment samples of diverse composition. The RNA yield from these samples ranged from 1.4 to 56 ÎŒg g of soil(−1) dry weight), whereas the DNA yield ranged from 23 to 435 ÎŒg g(−1). In addition, studies with the same soil sample showed that the DNA yield was, on average, 40% higher than that in our previous procedure and 68% higher than that in a commercial bead milling method. For the majority of the samples, the DNA and RNA recovered were of sufficient purity for nuclease digestion, microarray hybridization, and PCR or reverse transcription-PCR amplification
    corecore