46 research outputs found

    Short communication: Gender and heat stress effects on hypothalamic gene expression and feed intake in broilers

    Get PDF
    Our study aims to evaluate gender and heat stress effects on animal performance and on the expression of five hypothalamic genes related to feed consumption: neuropeptide Y (NPY), ghrelin (GHRL), pro-opiomelanocortin (POMC), AMP-activated protein kinase (AMPKα-1), and liver kinase B1 (LKB1). To assay these effects, 42-day-old male and female broilers were maintained in thermal comfort or were subjected to heat stress (HS, 38°C for 24 hours). All animals were fed with diets formulated to meet their nutritional requirements. Broilers subjected to HS showed lower weight gain (p=0.0065) and tended to have lower feed intake (p=0.0687) than broilers kept in comfortable conditions. We observed gender and heat stress interaction effects on NPY (p=0.0225), AMPKα-1 (p=0.0398), and POMC expression (p=0.0072). The highest NPY gene expression was observed in male broilers from the thermal comfort group. Male broilers exposed to HS showed the highest AMPKα-1 gene expression levels. Comparing POMC expression between males and females at the comfortable temperature, we observed that females showed higher POMC expression levels than male broilers. A gender effect was also observed on LKB1 and AMPKα-1 gene expression (p=0.0256 and p=0.0001, respectively); increased expression was observed in male broilers. Our results indicate that the expression of some hypothalamic genes related to food consumption may contribute to the observed differences in voluntary feed intake between animals of different gender exposed to different environmental conditions

    The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails

    Get PDF
    Since cinnamon has vitamins and minerals in addition to antioxidants compounds in its chemical composition studies have shown the potential of cinnamon supplementation on some important characteristics in the performance of birds. Thus, this study was conducted under the hypothesis that the inclusion of cinnamon in the laying quail diet could influence the performance of the birds through the expression of genes related to antioxidant activity and lipid metabolism. To test this hypothesis, 144 Japanese quail (Coturnix japonica) with an initial age of 18 weeks and average weight of 133g were distributed in a completely randomized design with two treatments: no cinnamon supplementation (NCS—control group) and with supplementation of 9g/kg of cinnamon powder (CPS). The experiment lasted for 84 days. At the end of the experimental period, six animals from each treatment were euthanized by cervical dislocation, blood was collected and organs weighed. Liver tissue was collected for gene expression and biochemical analyses. We observed a significant effect of cinnamon inclusion on the weight of the pancreas (P = 0.0418), intestine (P = 0.0209) and ovary (P = 0.0389). Lower weights of the pancreas and intestine, and a higher ovary weight was observed in birds receiving the CPS diet. Quails fed with cinnamon supplementation also had better feed conversion per egg mass (2.426 g /g, P = 0.0126), and higher triglyceride (1516.60 mg/dL, P = 0.0207), uric acid (7.40 mg/dL, P = 0.0003) and VLDL (300.40 mg/dL, P = 0.0252) contents. A decreased content of thiobarbituric acid reactive substances (TBARS) and lower catalase activity was observed in the liver of quails from the CPS diet (0.086 nmoles/mg PTN, and 2.304 H2O2/min/mg PTN, respectively). Quails from the CPS group presented significantly greater expression of FAS (fatty acid synthase, 36,03 AU), ACC (Acetyl-CoA Carboxylase, 31.33 AU), APOAI (apolipoprotein A-I, 803,9 AU), ESR2 (estrogen receptor 2, 0.73 AU) SOD (superoxide dismutase, 4,933.9 AU) and GPx7 (glutathione peroxidase 7, 9.756 AU) than quails from the control group. These results allow us to suggest that cinnamon powder supplementation in the diet of laying quails can promote balance in the metabolism and better performance through the modulation of antioxidant activity and the expression of genes related to lipid metabolism

    Chronic alcohol intake modifies phorbol ester binding in selected rat brain areas

    No full text
    3H-Phorbol 12,13 dibutyrate binding to rat brain was modified by chronic ethanol treatment. Among the areas examined hippocampus and cortex showed a decrease in Bmax values of 32 and 24% respectively. No significant effect was observed in hypothalamus and cerebellum. In vitro ethanol did not modify the binding in all the areas except at molar concentrations. In hippocampus and cortex the direct measurement of protein kinase C activity indicated that the decrease in phorbol ester binding was accompanied with a concomitant decrease in kinase activity. The results indicate that chronic ethanol treatment leads to an inhibition of brain protein kinase C function
    corecore