16 research outputs found

    Response in blood and urinary parameters of dairy cows to the increase in dietary cation-anion balance

    Get PDF
    Estudou-se efeito de quatro níveis de dietas catiônicas sobre os parâmetros ácido-base do sangue e o pH urinário de vacas em lactação. Para a manipulação dos níveis do balanço cátion-amônico da dieta (BCAD), foram adicionadas diferentes concentrações de bicarbonato de sódio às dietas, obtendo-se os seguintes tratamentos: +150, +250, +400 e +500mEq/kg de matéria seca. O experimento foi realizado durante o verão, por um período total de 72 dias, utilizando-se oito vacas da raça Holandesa após o pico de lactação, distribuídas em quadrado latino (4x4), replicado, em que cada período teve duração de 18 dias. O pH urinário e o bicarbonato, o pH, o CO2 total e a pCO2 do sangue aumentaram linearmente (P<0,01) com o aumento do BCAD. As concentrações de sódio e potássio do sangue não foram modificadas (P>0,05) pelo BCAD. A concentração de cloro no sangue diminuiu linearmente (P<0,01) com o aumento do BCAD. O aumento do BCAD afetou o equilíbrio ácido-base das vacas, promovendo efeito alcalinogênico, o que poderia levar a diferenças significativas no desempenho do animal.The effect of four levels of cationic diets on acid-basic parameters of blood and the urinary pH were studied in dairy cattle. In order tomanage the dietary cation-anion balance (DCAB) different concentrations of sodium bicarbonate were added to diets, obtaining the following treatments: +150, +250, +400, and +500mEq/kg dry matter. The experiment was performed during the summer, totalizing 72 days, using eight Holstein cows after the lactating peak, distributed in 4 x 4 replicated latin square, with 18 days in each period. The urinary pH and the blood parameters (bicarbonate, pH, total CO2, and pCO2) linearly increased (P<0.01) with the DCAB increase. The sodium and potassium concentrations in blood were not modified (P>0.05) by DCAB. The chloride concentration in blood linearly decreased (P<0.01) with the DCAB increase. The DCAB increase affected the acid-base status of cows, promoting an alkalinogenic effect, what could lead to significant differences on animal performance

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Avaliação de colheita de líquido ruminal por fístula ou sonda esofágica em bovinos

    No full text
    Estudaram-se os efeitos do método de colheita de líquido ruminal, por sonda ou fístula ruminal, e do momento de colheita, antes e depois da alimentação, sobre a concentração e proporção de AGVs, concentração de nitrogênio amoniacal, concentração de minerais e pH do líquido ruminal, utilizando-se quatro bovinos machos da raça Nelore, com fístula ruminal e peso médio de 237kg. Observou-se maior concentração total de ácidos graxos voláteis no líquido colhido por fístula antes e depois da alimentação. Maior porcentagem de ácido acético, menor de ácido propiônico e butírico, menor concentração de nitrogênio amoniacal, maior valor do pH e menor concentração de cálcio, de fósforo e de potássio foram obtidas no líquido colhido por sonda esofagiana. Tanto o líquido ruminal colhido por fístula como o por sonda esofagiana antes da alimentação apresentaram menor concentração de AGVs, menor porcentagem de ácido propiônico, menor concentração de nitrogênio amoniacal, maior porcentagem de ácido butírico, maior relação AC/PRO e maior pH do que o colhido após a alimentação. Sugere-se trabalhar com colheitas por fístula ruminal após a administração do alimento em experimentos em que se queira observar os primeiros efeitos dos tratamentos sobre o metabolismo ruminal. Com conhecimento prévio da ação do tratamento no metabolismo ruminal e sendo utilizado um tratamento-controle, a colheita por sonda esofagiana poderá ser utilizada, mas apenas para experimentos em que os parâmetros ruminais sejam o enfoque secundário

    Efeito da suplementação de cobre e selênio na dieta de novilhos Brangus sobre o desempenho e fermentação ruminal

    No full text
    Vinte e oito bovinos Brangus foram usados para determinar o efeito da suplementação de cobre e selênio no desempenho e na fermentação ruminal. Os animais foram divididos em: 1) C(Controle) - sem a suplementação de cobre e selênio; 2) Se - 2mg Se/kg de matéria seca na forma de selenito de sódio; 3) Cu - 40mg Cu/kg de matéria seca na forma de sulfato de cobre; 4) Se/Cu - 2mg Se/kg de matéria seca na forma de selenito de sódio e 40mg Cu/kg de matéria seca na forma de sulfato de cobre. As pesagens dos animais foram feitas em intervalos de 28 dias, após jejum completo de 18 horas. Foram colhidas amostras de líquido ruminal para análises de ácidos graxos voláteis e pH. O ganho de peso diário aumentou com a suplementação de Se (P0,05). Os animais submetidos à suplementação com Cu apresentaram menor pH ruminal quando comparado com a suplementação Se/Cu (P0,05) entre os tratamentos. Apesar do pouco efeito na fermentação ruminal, as suplementações de selênio, cobre e selênio/cobre proporcionaram uma melhor eficiência alimentar
    corecore