22 research outputs found

    Landslide velocity, thickness, and rheology from remote sensing: La Clapiere landslide, France

    Get PDF
    Quantifying the velocity, volume, and rheology of deep, slow-moving landslides is essential for hazard prediction and understanding landscape evolution, but existing field-based methods are difficult or impossible to implement at remote sites. Here we present a novel and widely applicable method for constraining landslide 3-D deformation and thickness by inverting surface change data from repeat stereo imagery. Our analysis of La Clapière, an ~1 km^2 bedrock landslide, reveals a concave-up failure surface with considerable roughness over length scales of tens of meters. Calibrating the thickness model with independent, local thickness measurements, we find a maximum thickness of 163 m and a rheology consistent with distributed deformation of the highly fractured landslide material, rather than sliding of an intact, rigid block. The technique is generally applicable to any mass movements that can be monitored by active or historic remote sensing

    BARE-EARTH EXTRACTION AND DTM GENERATION FROM PHOTOGRAMMETRIC POINT CLOUDS WITH A PARTIAL USE OF AN EXISTING LOWER RESOLUTION DTM

    No full text
    A method of extracting bare-earth points from photogrammetric point clouds by partially using an existing lower resolution digital terrain model (DTM) is presented. The bare-earth points are extracted based on a threshold defined by local slope. The local slope is estimated from the lower resolution DTM. A gridded DTM is then interpolated from the extracted bare-earth points. Five different interpolation algorithms are implemented and evaluated to identify the most suitable interpolation method for such non-uniformly scattered data. The algorithm is tested on four test sites with varying topographic and ground cover characteristics. The results are evaluated against a reference DTM created using aerial laser scanning. The deviations of the extracted bare-earth points, and the interpolated DTM, from the reference DTM increases with increasing forest canopy density and terrain roughness. The DTM created by the method is significantly closer to the reference DTM than the lower resolution national DTM. The ANUDEM (Australian National University Digital Elevation Modelling) interpolation method is found to be the best performing interpolation method in terms of reducing the deviations and in terms of modelling the terrain realistically with minimum artefacts, although the differences among the interpolation methods are not considerably large

    OBJECT-BASED ANALYSIS OF AERIAL PHOTOGRAMMETRIC POINT CLOUD AND SPECTRAL DATA FOR LAND COVER MAPPING

    No full text
    The acquisition of 3D point data with the use of both aerial laser scanning (ALS) and matching of aerial stereo images coupled with advances in image processing algorithms in the past years provide opportunities to map land cover types with better precision than before. The present study applies Object-Based Image Analysis (OBIA) to 3D point cloud data obtained from matching of stereo aerial images together with spectral data to map land cover types of the Nord-Trøndelag county of Norway. The multi-resolution segmentation algorithm of the Definiens eCognition™ software is used to segment the scenes into homogenous objects. The objects are then classified into different land cover types using rules created based on the definitions given for each land cover type by the Norwegian Forest and Landscape Institute. The quality of the land cover map was evaluated using data collected in the field as part of the Norwegian National Forest Inventory. The results show that the classification has an overall accuracy of about 80% and a kappa index of about 0.65. OBIA is found to be a suitable method for utilizing 3D remote sensing data for land cover mapping in an effort to replace manual delineation methods

    Componentes principais como preditores no mapeamento digital de classes de solos Principal components as predictor variables in digital mapping of soil classes

    Get PDF
    Tecnologias disponíveis para a observação da Terra oferecem uma grande gama de informações sobre componentes ambientais que, por estarem relacionadas com a formação dos solos, podem ser usadas como variáveis preditoras no Mapeamento Digital de Solos (MDS). No entanto, modelos com um grande número de preditores, bem como a existência de multicolinearidade entre os dados, podem ser ineficazes no mapeamento de classes e propriedades do solo. O objetivo deste estudo foi empregar a Análise de Componentes Principais (ACP) visando a selecionar e diminuir o número de preditores na regressão logística múltipla multinomial (RLMM) utilizada no mapeamento de classes de solos. Nove covariáveis ambientais, ligadas ao fator de formação relevo, foram derivadas de um Modelo Digital de Elevação e denominadas variáveis originais, estas foram submetidas à ACP e transformadas em Componentes Principais (CP). As RLMM foram desenvolvidas utilizando-se atributos de terreno e as CP como variáveis explicativas. O mapa de solos gerado a partir de três CP (65,6% da variância original) obteve um índice kappa de 37,3%, inferior aos 48,5% alcançado pelo mapa de solos gerado a partir de todas as nove variáveis originais.<br>Available technologies for Earth observation offer a wide range of predictors relevant to Digital Soil Mapping (DSM). However, models with a large number of predictors, as well as, the existence of multicollinearity among the data, may be ineffective in the mapping of classes and soil properties. The aim of this study was to use the Principal Component Analysis (PCA) to reduce the number of predictors in the multinomial logistic regression (MLR) used in soil mapping. Nine environmental covariates, related to the relief factor of soil formation, were derived from a digital elevation model and named the original variables, which were submitted to PCA and transformed into principal components (PC). The MLR were developed using the terrain attributes and the PC as explanatory variables. The soil map generated from three PC (65.6% of the original variance) had a kappa index of 37.3%, lower than the 48.5% achieved by the soil map generated from all nine original variables
    corecore