2,341 research outputs found

    Health equity and sustainability in greenfields urban planning.

    Full text link

    B mu G@Sbase-a microbial gene expression and comparative genomic database

    Get PDF
    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future

    Quantum Cosmology and Conformal Invariance

    Full text link
    According to Belinsky, Khalatnikov and Lifshitz, gravity near a space-like singularity reduces to a set of decoupled one-dimensional mechanical models at each point in space. We point out that these models fall into a class of conformal mechanical models first introduced by de Alfaro, Fubini and Furlan (DFF). The deformation used by DFF to render the spectrum discrete corresponds to a negative cosmological constant. The wave function of the universe is the zero-energy eigenmode of the Hamiltonian, also known as the spherical vector of the representation of the conformal group SO(1,2). A new class of conformal quantum mechanical models is constructed, based on the quantization of nilpotent coadjoint orbits, where the conformal group is enhanced to an ADE non-compact group for which the spherical vector is known.Comment: 4 pages, latex2e, uses revtex

    Cancellation of quantum mechanical higher loop contributions to the gravitational chiral anomaly

    Full text link
    We give an explicit demonstration, using the rigorous Feynman rules developed in~\0^{1}, that the regularized trace \tr \gamma_5 e^{-\beta \Dslash^2} for the gravitational chiral anomaly expressed as an appropriate quantum mechanical path integral is β\beta-independent up to two-loop level. Identities and diagrammatic notations are developed to facilitate rapid evaluation of graphs given by these rules.Comment: 10 pages, LaTeX and psfig (many figures

    Arbitrary Spin Representations in de Sitter from dS/CFT with Applications to dS Supergravity

    Get PDF
    We present a simple group representation analysis of massive, and particularly ``partially massless'', fields of arbitrary spin in de Sitter spaces of any dimension. The method uses bulk to boundary propagators to relate these fields to Euclidean conformal ones at one dimension lower. These results are then used to revisit an old question: can a consistent de Sitter supergravity be constructed, at least within its intrinsic horizon?Comment: 19 pages LaTex, references added, version to appear Nucl. Phys.

    On the quantum mechanics of M(atrix) theory

    Get PDF
    We present a study of M(atrix) theory from a purely canonical viewpoint. In particular, we identify free particle asymptotic states of the model corresponding to the supergraviton multiplet of eleven dimensional supergravity. These states have a natural interpretation as excitations in the flat directions of the matrix model potential. Furthermore, we provide the split of the matrix model Hamiltonian into a free part describing the free propagation of these particle states along with the interaction Hamiltonian describing their interactions. Elementary quantum mechanical perturbation theory then yields an effective potential for these particles as an expansion in their inverse separation. Remarkably we find that the leading velocity independent terms of the effective potential cancel in agreement with the fact that there is no force between stationary D0 branes. The scheme we present provides a framework in which one can perturbatively compute the M(atrix) theory result for the eleven dimensional supergraviton S matrix.Comment: 28 pages, Latex2

    Collisionless Damping of Fast MHD Waves in Magneto-rotational Winds

    Full text link
    We propose collisionless damping of fast MHD waves as an important mechanism for the heating and acceleration of winds from rotating stars. Stellar rotation causes magnetic field lines anchored at the surface to form a spiral pattern and magneto-rotational winds can be driven. If the structure is a magnetically dominated, fast MHD waves generated at the surface can propagate almost radially outward and cross the field lines. The propagating waves undergo collisionless damping owing to interactions with particles surfing on magnetic mirrors that are formed by the waves themselves. The damping is especially effective where the angle between the wave propagation and the field lines becomes moderately large (20\sim 20 to 8080^{\circ}). The angle tends naturally to increase into this range because the field in magneto-rotational winds develops an increasingly large azimuthal component. The dissipation of the wave energy produces heating and acceleration of the outflow. We show using specified wind structures that this damping process can be important in both solar-type stars and massive stars that have moderately large rotation rates. This mechanism can play a role in coronae of young solar-type stars which are rapidly rotating and show X-ray luminosities much larger than the sun. The mechanism could also be important for producing the extended X-ray emitting regions inferred to exist in massive stars of spectral type middle B and later.Comment: 12 pages, including 7 figures, accepted for publication in Ap

    System design of a quadrupedal galloping machine

    Full text link
    In this paper we present the system design of a machine that we have constructed to study a quadrupedal gallop gait. The gallop gait is the preferred high-speed gait of most cursorial quadrupeds. To gallop, an animal must generate ballistic trajectories with characteristic strong impacts, coordinate leg movements with asymmetric footfall phasing, and effectively use compliant members, all the while maintaining dynamic stability. In this paper we seek to further understand the primary biological features necessary for galloping by building and testing a robotic quadruped similar in size to a large goat or antelope. These features include high-speed actuation, energy storage, on-line learning control, and high-performance attitude sensing. Because body dynamics are primarily influenced by the impulses delivered by the legs, the successful design and control of single leg energetics is a major focus of this work. The leg stores energy during flight by adding tension to a spring acting across an articulated knee. During stance, the spring energy is quickly released using a novel capstan design. As a precursor to quadruped control, two intelligent strategies have been developed for verification on a one-legged system. The Levenberg-Marquardt on-line learning method is applied to a simple heuristic controller and provides good control over height and forward velocity. Direct adaptive fuzzy control, which requires no system modeling but is more computationally expensive, exhibits better response. Using these techniques we have been successful in operating one leg at speeds necessary for a dynamic gallop of a machine of this scale. Another necessary component of quadruped locomotion is high-resolution and high-bandwidth attitude sensing. The large ground impact accelerations, which cause problems for any single traditional sensor, are overcome through the use of an inertial sensing approach using updates from optical sensors and vehicle kinematics
    corecore