6,268 research outputs found
High frame rate multi-perspective cardiac ultrasound imaging using phased array probes
Ultrasound (US) imaging is used to assess cardiac disease by assessing the geometry and function of the heart utilizing its high spatial and temporal resolution. However, because of physical constraints, drawbacks of US include limited field-of-view, refraction, resolution and contrast anisotropy. These issues cannot be resolved when using a single probe. Here, an interleaved multi-perspective 2-D US imaging system was introduced, aiming at improved imaging of the left ventricle (LV) of the heart by acquiring US data from two separate phased array probes simultaneously at a high frame rate. In an ex-vivo experiment of a beating porcine heart, parasternal long-axis and apical views of the left ventricle were acquired using two phased array probes. Interleaved multi-probe US data were acquired at a frame rate of 170 frames per second (FPS) using diverging wave imaging under 11 angles. Image registration and fusion algorithms were developed to align and fuse the US images from two different probes. First- and second-order speckle statistics were computed to characterize the resulting probability distribution function and point spread function of the multi-probe image data. First-order speckle analysis showed less overlap of the histograms (reduction of 34.4%) and higher contrast-to-noise ratio (CNR, increase of 27.3%) between endocardium and myocardium in the fused images. Autocorrelation results showed an improved and more isotropic resolution for the multi-perspective images (single-perspective: 0.59 mm × 0.21 mm, multi-perspective: 0.35 mm × 0.18 mm). Moreover, mean gradient (MG) (increase of 74.4%) and entropy (increase of 23.1%) results indicated that image details of the myocardial tissue can be better observed after fusion. To conclude, interleaved multi-perspective high frame rate US imaging was developed and demonstrated in an ex-vivo experimental setup, revealing enlarged field-of-view, and improved image contrast and resolution of cardiac images.</p
Minimally Invasive Posterior Stabilization Improved Ambulation and Pain Scores in Patients with Plasmacytomas and/or Metastases of the Spine
Background. The incidence of spine metastasis is expected to increase as the population ages, and so is the number of palliative spinal procedures. Minimally invasive procedures are attractive options in that they offer the theoretical advantage of less morbidity. Purpose. The purpose of our study was to evaluate whether minimally invasive posterior spinal instrumentation provided significant pain relief and improved function. Study Design. We compared pre- and postoperative pain scores as well as ambulatory status in a population of patients suffering from oncologic conditions in the spine. Patient Sample. A consecutive series of patients with spine tumors treated minimally invasively with stabilization were reviewed. Outcome Measures. Visual analog pain scale as well as pre- and postoperative ambulatory status were used as outcome measures. Methods. Twenty-four patients who underwent minimally invasive posterior spinal instrumentation for metastasis were retrospectively reviewed. Results. Seven (29%) patients were unable to ambulate secondary to pain and instability prior to surgery. All patients were ambulating within 2 to 3 days after having surgery (P = 0.01). The mean visual analog scale value for the preoperative patients was 2.8, and the mean postoperative value was 1.0 (P = 0.001). Conclusion. Minimally invasive posterior spinal instrumentation significantly improved pain and ambulatory status in this series
In vivo bistatic dual-aperture ultrasound imaging and elastography of the abdominal aorta
Introduction: In this paper we introduce in vivo multi-aperture ultrasound imaging and elastography of the abdominal aorta. Monitoring of the geometry and growth of abdominal aortic aneurysms (AAA) is paramount for risk stratification and intervention planning. However, such an assessment is limited by the lateral lumen-wall contrast and resolution of conventional ultrasound. Here, an in vivo dual-aperture bistatic imaging approach is shown to improve abdominal ultrasound and strain imaging quality significantly. By scanning the aorta from different directions, a larger part of the vessel circumference can be visualized. Methods: In this first-in-man volunteer study, the performance of multi-aperture ultrasound imaging and elastography of the abdominal aortic wall was assessed in 20 healthy volunteers. Dual-probe acquisition was performed in which two curved array transducers were aligned in the same imaging plane. The transducers alternately transmit and both probes receive simultaneously on each transmit event, which allows for the reconstruction of four ultrasound signals. Automatic probe localization was achieved by optimizing the coherence of the trans-probe data, using a gradient descent algorithm. Speckle-tracking was performed on the four individual bistatic signals, after which the respective axial displacements were compounded and strains were calculated. Results: Using bistatic multi-aperture ultrasound imaging, the image quality of the ultrasound images, i.e., the angular coverage of the wall, was improved which enables accurate estimation of local motion dynamics and strain in the abdominal aortic wall. The motion tracking error was reduced from 1.3 mm ± 0.63 mm to 0.16 mm ± 0.076 mm, which increased the circumferential elastographic signal-to-noise ratio (SNRe) by 12.3 dB ± 8.3 dB on average, revealing more accurate and homogeneous strain estimates compared to single-perspective ultrasound. Conclusion: Multi-aperture ultrasound imaging and elastography is feasible in vivo and can provide the clinician with vital information about the anatomical and mechanical state of AAAs in the future.</p
Production of Neutron-rich Heavy Residues and the Freeze-out Temperature in the Fragmentation of Relativistic 238U Projectiles Determined by the Isospin Thermometer
Isotope yields of heavy residues produced in collisions of 238U with lead at
1AGeV show indications for a simultaneous break-up process. From the average
N-over-Z ratio of the final residues up to Z = 70, the average limiting
temperature of the break-up configuration at freeze out was determined to T
approximately 5 MeV using the isospin-thermometer method. Consequences for the
understanding of other phenomena in highly excited nuclear systems are
discussed.Comment: 22 pages, 9 figures, accepted by Nucl. Phys.
Energy-efficient steering systems for heavy-duty commercial vehicles
Besides the braking system the steering system is one of the most important systems on vehicles. The reliability and the performance of a steering system decides on the controllability of the vehicle under normal conditions as well as emergency situations. In everyday use the characteristics, the connectivity to assistance systems and the energy efficiency of the steering system become more and more important to fulfill the increasing demands regarding fuel consumption, carbon dioxide emissions and comfort. To meet these demands, new steering systems must be implemented and new technologies have to be developed. This contribution compares different approaches regarding functionality and energy efficiency to give an indication which system is the most promising solution for future front axle steering systems as well as rear steered axles (tag- or pusher axle) on trucks
- …