16,206 research outputs found

    A coverage independent method to analyze large scale anisotropies

    Full text link
    The arrival time distribution of cosmic ray events is well suited to extract information regarding sky anisotropies. For an experiment with nearly constant exposure, the frequency resolution one can achieve is given by the inverse of the time TT during which the data was recorded. For TT larger than one calendar year the resolution becomes sufficient to resolve the sidereal and diurnal frequencies. Using a Fourier expansion on a modified time parameter, we show in this note that one can accurately extract sidereal modulations without knowledge of the experimental coverage. This procedure also gives the full frequency pattern of the event sample under studies which contains important information about possible systematics entering in the sidereal analysis. We also show how this method allows to correct for those systematics. Finally, we show that a two dimensional analysis, in the form of the spherical harmonic (YlmY_l^m) decomposition, can be performed under the same conditions for all m0m\ne 0.Comment: 8 pages, 6 figure

    Event Weighted Tests for Detecting Periodicity in Photon Arrival Times

    Full text link
    This paper treats the problem of detecting periodicity in a sequence of photon arrival times, which occurs, for example, in attempting to detect gamma-ray pulsars. A particular focus is on how auxiliary information, typically source intensity, background intensity, and incidence angles and energies associated with each photon arrival should be used to maximize the detection power. We construct a class of likelihood-based tests, score tests, which give rise to event weighting in a principled and natural way, and derive expressions quantifying the power of the tests. These results can be used to compare the efficacies of different weight functions, including cuts in energy and incidence angle. The test is targeted toward a template for the periodic lightcurve, and we quantify how deviation from that template affects the power of detection

    Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders

    Get PDF
    As part of a larger program aimed at evaluating acoustic techniques for mapping the distribution of subsurface oil and gas associated with the Deepwater Horizon-Macondo oil spill, observations were made on June 24 and 25, 2010 using vessel-mounted calibrated single-beam echo sounders on the National Oceanic and Atmospheric Administration ship Thomas Jefferson. Coincident with visual observations of oil at the sea surface, the 200-kHz echo sounder showed anomalously high-volume scattering strength in the upper 200 m on the western side of the wellhead, more than 100 times higher than the surrounding waters at 1,800-m distance from the wellhead, and weakening with increasing distance out to 5,000 m. Similar high-volume scattering anomalies were not observed at 12 or 38 kHz, although observations of anomalously low-volume scattering strength were made in the deep scattering layer at these frequencies at approximately the same locations. Together with observations of ocean currents, the acoustic observations are consistent with a rising plume of small (\u3c 1-mm radius) oil droplets. Using simplistic but reasonable assumptions about the properties of the oil droplets, an estimate of the flow rate was made that is remarkably consistent with those made at the wellhead by other means. The uncertainty in this acoustically derived estimate is high due to lack of knowledge of the size distribution and rise speed of the oil droplets. If properly constrained, these types of acoustic measurements can be used to rapidly estimate the flow rate of oil reaching the surface over large temporal and spatial scales

    Unitary transformations for testing Bell inequalities

    Full text link
    It is shown that optical experimental tests of Bell inequality violations can be described by SU(1,1) transformations of the vacuum state, followed by photon coincidence detections. The set of all possible tests are described by various SU(1,1) subgroups of Sp(8,R\Bbb R). In addition to establishing a common formalism for physically distinct Bell inequality tests, the similarities and differences of post--selected tests of Bell inequality violations are also made clear. A consequence of this analysis is that Bell inequality tests are performed on a very general version of SU(1,1) coherent states, and the theoretical violation of the Bell inequality by coincidence detection is calculated and discussed. This group theoretical approach to Bell states is relevant to Bell state measurements, which are performed, for example, in quantum teleportation.Comment: 3 figure

    Estimating the number of neurons in multi-neuronal spike trains

    Full text link
    A common way of studying the relationship between neural activity and behavior is through the analysis of neuronal spike trains that are recorded using one or more electrodes implanted in the brain. Each spike train typically contains spikes generated by multiple neurons. A natural question that arises is "what is the number of neurons ν\nu generating the spike train?"; This article proposes a method-of-moments technique for estimating ν\nu. This technique estimates the noise nonparametrically using data from the silent region of the spike train and it applies to isolated spikes with a possibly small, but nonnegligible, presence of overlapping spikes. Conditions are established in which the resulting estimator for ν\nu is shown to be strongly consistent. To gauge its finite sample performance, the technique is applied to simulated spike trains as well as to actual neuronal spike train data.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS371 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Statistics of Multiple Sign Changes in a Discrete Non-Markovian Sequence

    Full text link
    We study analytically the statistics of multiple sign changes in a discrete non-Markovian sequence ,\psi_i=\phi_i+\phi_{i-1} (i=1,2....,n) where \phi_i's are independent and identically distributed random variables each drawn from a symmetric and continuous distribution \rho(\phi). We show that the probability P_m(n) of m sign changes upto n steps is universal, i.e., independent of the distribution \rho(\phi). The mean and variance of the number of sign changes are computed exactly for all n>0. We show that the generating function {\tilde P}(p,n)=\sum_{m=0}^{\infty}P_m(n)p^m\sim \exp[-\theta_d(p)n] for large n where the `discrete' partial survival exponent \theta_d(p) is given by a nontrivial formula, \theta_d(p)=\log[{{\sin}^{-1}(\sqrt{1-p^2})}/{\sqrt{1-p^2}}] for 0\le p\le 1. We also show that in the natural scaling limit when m is large, n is large but but keeping x=m/n fixed, P_m(n)\sim \exp[-n \Phi(x)] where the large deviation function \Phi(x) is computed. The implications of these results for Ising spin glasses are discussed.Comment: 4 pages revtex, 1 eps figur

    A Simple Geometrical Model for Solid Friction

    Full text link
    We present a simple model for the friction of two solid bodies moving against each other. In a self consistent way we can obtain the dependence of the macroscopic friction force as a function of the driving velocity, the normal force and the ruggedness of the surfaces in contact. Our results are discussed in the context of friction laws used in earthquake models.Comment: 9 pages, plain TeX, preprint HLRZ 24/9

    Finite temperature molecular dynamics study of unstable stacking fault free energies in silicon

    Full text link
    We calculate the free energies of unstable stacking fault (USF) configurations on the glide and shuffle slip planes in silicon as a function of temperature, using the recently developed Environment Dependent Interatomic Potential (EDIP). We employ the molecular dynamics (MD) adiabatic switching method with appropriate periodic boundary conditions and restrictions to atomic motion that guarantee stability and include volume relaxation of the USF configurations perpendicular to the slip plane. Our MD results using the EDIP model agree fairly well with earlier first-principles estimates for the transition from shuffle to glide plane dominance as a function of temperature. We use these results to make contact to brittle-ductile transition models.Comment: 6 pages revtex, 4 figs, 16 refs, to appear in Phys. Rev.
    corecore