3,087 research outputs found

    Real-space study of the growth of magnesium on ruthenium

    Full text link
    The growth of magnesium on ruthenium has been studied by low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM). In LEEM, a layer-by-layer growth is observed except in the first monolayer, where the completion of the first layer in inferred by a clear peak in electron reflectivity. Desorption from the films is readily observable at 400 K. Real-space STM and low-energy electron diffraction confirm that sub-monolayer coverage presents a moir\'e pattern with a 1.2 nm periodicity, which evolves with further Mg deposition by compressing the Mg layer to a 2.2 nm periodicity. Layer-by-layer growth is followed in LEEM up to 10 ML. On films several ML thick a substantial density of stacking faults are observed by dark-field imaging on large terraces of the substrate, while screw dislocations appear in the stepped areas. The latter are suggested to result from the mismatch in heights of the Mg and Ru steps. Quantum size effect oscillations in the reflected LEEM intensity are observed as a function of thickness, indicating an abrupt Mg/Ru interface.Comment: 21 pages, 10 figure

    Nanoscale periodicity in stripe-forming systems at high temperature: Au/W(110)

    Full text link
    We observe using low-energy electron microscopy the self-assembly of monolayer-thick stripes of Au on W(110) near the transition temperature between stripes and the non-patterned (homogeneous) phase. We demonstrate that the amplitude of this Au stripe phase decreases with increasing temperature and vanishes at the order-disorder transition (ODT). The wavelength varies much more slowly with temperature and coverage than theories of stress-domain patterns with sharp phase boundaries would predict, and maintains a finite value of about 100 nm at the ODT. We argue that such nanometer-scale stripes should often appear near the ODT.Comment: 5 page

    Electron reflectivity measurements of Ag adatom concentrations on W(110)

    Full text link
    The density of two-dimensional Ag adatom gases on W(110) is determined by monitoring local electron reflectivity using low energy electron microscopy (LEEM). This method of adatom concentration measurement can detect changes in adatom density at least as small as 10−3^{-3} ML for a μ\mum size region of the surface. Using this technique at high temperatures, we measure the sublimation rates of Ag adatoms on W(110). At lower temperatures, where Ag adatoms condense into monolayer islands, we determine the temperature dependence of the density of adatoms coexisting with this condensed phase and compare it with previous estimates.Comment: Presented at the ECOSS 23 Conference (Berlin 2005

    Magnetism in nanometer-thick magnetite

    Get PDF
    The oldest known magnetic material, magnetite, is of current interest for use in spintronics as a thin film. An open question is how thin can magnetite films be and still retain the robust ferrimagnetism required for many applications. We have grown one-nanometer-thick magnetite crystals and characterized them in situ by electron and photoelectron microscopies including selected-area x-ray circular dichroism. Well-defined magnetic patterns are observed in individual nano-crystals up to at least 520 K, establishing the retention of ferrimagnetism in magnetite two-unit-cells thick.Comment: 5 pages, 4 figure

    Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers

    Full text link
    By means of spin-polarized low-energy electron microscopy (SPLEEM) we show that the magnetic easy-axis of one to three atomic-layer thick cobalt films on ruthenium crystals changes its orientation twice during deposition: one-monolayer and three-monolayer thick films are magnetized in-plane, while two-monolayer films are magnetized out-of-plane, with a Curie temperature well above room temperature. Fully-relativistic calculations based on the Screened Korringa-Kohn-Rostoker (SKKR) method demonstrate that only for two-monolayer cobalt films the interplay between strain, surface and interface effects leads to perpendicular magnetization.Comment: 5 pages, 4 figures. Presented at the 2005 ECOSS conference in Berlin, and at the 2005 Fall meeting of the MRS. Accepted for publication at Phys. Rev. Lett., after minor change

    Effects of Normobaric Hypoxia on Oculomotor Dynamics of Aviator Students during a Simulated Flight Task

    Get PDF
    Hypoxia occurs when the body\u27s tissues are unable to obtain adequate oxygen supply and is the primary environmental factor present when pilots are exposed to increasing altitude levels. Hypoxia leads to impaired vision, cognition, and motor control function, which can negatively affect performance and become deadly if a pilot becomes incapacitated. Thus, objective identification of early-onset hypoxia is critical to increase the time of useful consciousness and prevent physiological episodes. Of the few studies utilizing eye-tracking, there is disagreement and mixed results concerning saccadic eye metrics as a means to measure and detect hypoxia. Therefore, the purpose of this study was to investigate saccadic velocity changes driven by acute normobaric hypoxia. Using a noninvasive infrared-based eye-tracking device, we recorded saccadic average peak velocity during flight tasks at simulated altitudes of 0 ft, 12,500 ft, and 19,000 ft. No changes were observed in saccadic average peak velocity among different altitude exposures. As time on task increased, saccadic average peak velocity decreased, suggesting that eye metrics can serve as an indicator of mental fatigue
    • …
    corecore