11,601 research outputs found
Estimating the small area effects of austerity measures in the UK
Governments across Europe are starting to implement a range of cost-cutting and income generating programmes in order to re-balance their fiscal budgets following substantial
investments in stabilising domestic financial institutions in 2008 and 2009. One method of doing this has been to increase tax rates such as the increase in VAT in the UK from 17.5% to 20% from January 1st 2011. In this paper we explore the different spatial impact of this VAT rise on household expenditure on public and private transport and communication technology from 2006 to 2016. We do this by combining three elements: an agent-based dynamic population microsimulation model that produces projected snapshots of the UK population in 2006, 2011 and 2016; an expenditure system model based on the familiar Quadratic Almost
Ideal Demand System approach; and synthetic small area census tables produced by projecting historical UK census data. Taken together these elements provide a toolkit for
assessing the potential spatial impact of rising taxes or prices (or both) and we use them to compare small area projections of household expenditure under two scenarios. The first is a 'no intervention' scenario where prices and income align to UK government inflation forecasts and the second is a one-off non-reversed 2.5% increase in VAT on goods and services rated at 17.5% on 1st January 2011. We present results for different areas (rural vs urban/deprived vs affluent) and for different income groups within them and discuss the potential implications for the telecommunications industry and for the usage of public and private transport
Number of Spin States of Identical Particles
In this paper we study the enumeration of number (denoted as ) of spin
states for fermions in a single- shell and bosons with spin . We show
that can be enumerated by the reduction from SU to SO(3). New
regularities of are discerned.Comment: 3 pages, no figures. to be publishe
The effectiveness of conventional trickling filter treatment plants at reducing concentrations of copper in wastewaters
This is the post-print version of the final paper published in Science of the Total Environment. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Eight different sewage treatment works were sampled in the North West of England. The effectiveness of the conventional treatment processes (primary sedimentation and biological trickling filters) as well as various tertiary treatment units in terms of both total and dissolved copper removal was evaluated. The removal of total copper across primary sedimentation averaged 53% and were relatively consistent at all sites, however, at three sites the removal of dissolved copper also occurred at this stage of treatment. Removal of total copper by the biological trickling filters averaged 49%, however, substantial dissolution of copper occurred at two sites, which highlighted the unpredictability of this treatment process in the removal of dissolved copper. Copper removal during tertiary treatment varied considerably even for the same treatment processes installed at different sites, primarily due to the variability of insoluble copper removal, with little effect on copper in the dissolved form being observed. The proportion of dissolved copper increased significantly during treatment, from an average of 22% in crude sewages to 55% in the final effluents. There may be the potential to optimise existing, conventional treatment processes (primary or biological treatment) to enhance dissolved copper removal, possibly reducing the requirement for installing any tertiary processes specifically for the removal of copper.United Utilities PL
-pairing interaction, number of states, and nine- sum rules of four identical particles
In this paper we study -pairing Hamiltonian and find that the sum of
eigenvalues of spin states equals sum of norm matrix elements within the
pair basis for four identical particles such as four fermions in a single-
shell or four bosons with spin . We relate number of states to sum rules of
nine- coefficients. We obtained sum rules for nine- coefficients
summing
over (1) even and , (2) even and odd , (3) odd and odd ,
and (4) both even and odd , where is a half integer and is an
integer.Comment: 6 pages, no figure, updated version, to be published. Physical Review
C, in pres
Seniority conservation and seniority violation in the g_{9/2} shell
The g_{9/2} shell of identical particles is the first one for which one can
have seniority-mixing effects. We consider three interactions: a delta
interaction that conserves seniority, a quadrupole-quadrupole (QQ) interaction
that does not, and a third one consisting of two-body matrix elements taken
from experiment (98Cd) that also leads to some seniority mixing. We deal with
proton holes relative to a Z=50,N=50 core. One surprising result is that, for a
four-particle system with total angular momentum I=4, there is one state with
seniority v=4 that is an eigenstate of any two-body interaction--seniority
conserving or not. The other two states are mixtures of v=2 and v=4 for the
seniority-mixing interactions. The same thing holds true for I=6. Another point
of interest is that the splittings E(I_{max})-E(I_{min}) are the same for three
and five particles with a seniority conserving interaction (a well known
result), but are equal and opposite for a QQ interaction. We also fit the
spectra with a combination of the delta and QQ interactions. The Z=40,N=40 core
plus g_{9/2} neutrons (Zr isotopes) is also considered, although it is
recognized that the core is deformed.Comment: 19 pages, 9 figures; RevTeX4. We have corrected the SDI values in
Table1 and Fig.1; in Sect.VII we have included an explanation of Fig.3
through triaxiality; we have added comments of Figs.10-12 in Sect.IX; we have
removed Figs.7-
Locally optimal unstructured finite element meshes in 3 dimensions
This paper investigates the adaptive finite element solution of a general class of variational problems in three dimensions using a combination of node movement, edge swapping, face swapping and node insertion. The adaptive strategy proposed is a generalization of previous work in two dimensions and is based upon the construction of a hierarchy of locally optimal meshes.
Results presented, both for a single equation and a system of coupled equations, suggest that this approach is able to produce better meshes of tetrahedra than those obtained by more conventional adaptive strategies and in a relatively efficient manner
New Relations for Coefficients of Fractional Parentage--the Redmond Recursion Formula with Seniority
We find a relationship between coefficients of fractional parentage (cfp)
obtained on the one hand from the principal parent method and on the other hand
from a seniority classification. We apply this to the Redmond recursion formula
which relates cfp's to cfp's where the principal parent
classification is used. We transform this to the seniority scheme. Our formula
differs from the Redmond formula inasmuch as we have a sum over the possible
seniorities for the cfp's, whereas Redmond has only one term.Comment: RevTex4, 17 pages; added Appendix A, with proof for the new relation;
corrected Eqs.(26),(38), and (39
Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs
Future nano-scale electronics built up from an Avogadro number of components
needs efficient, highly scalable, and robust means of communication in order to
be competitive with traditional silicon approaches. In recent years, the
Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect
challenges in silicon-based electronics. Current NoC architectures are either
highly regular or fully customized, both of which represent implausible
assumptions for emerging bottom-up self-assembled molecular electronics that
are generally assumed to have a high degree of irregularity and imperfection.
Here, we pragmatically and experimentally investigate important design
trade-offs and properties of an irregular, abstract, yet physically plausible
3D small-world interconnect fabric that is inspired by modern network-on-chip
paradigms. We vary the framework's key parameters, such as the connectivity,
the number of switch nodes, the distribution of long- versus short-range
connections, and measure the network's relevant communication characteristics.
We further explore the robustness against link failures and the ability and
efficiency to solve a simple toy problem, the synchronization task. The results
confirm that (1) computation in irregular assemblies is a promising and
disruptive computing paradigm for self-assembled nano-scale electronics and (2)
that 3D small-world interconnect fabrics with a power-law decaying distribution
of shortcut lengths are physically plausible and have major advantages over
local 2D and 3D regular topologies
Companion problems in quasispin and isospin
We note that the same mathematical results apply to problems involving
quasispin and isospin, but the problems per se are different. In the quasispin
case, one deals with a system of identical fermions (e.g. neutrons) and address
the problem of how many seniority conserving interactions there are. In the
isospin case, one deals with a system of both neutrons and protons and the
problem in question is the number of neutron-proton pairs with a given total
angular momentum. Other companion problems are also discussed.Comment: 12 pages, Latex; some additions in section II and a brief summary at
the en
Size-sensitive perceptual representations underlie visual and haptic object recognition.
A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations
- …