1,659 research outputs found

    Steering proton migration in hydrocarbons using intense few-cycle laser fields

    Get PDF
    Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to control the movement of nuclei with tailored light, within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are monitored using coincident 3D momentum imaging spectroscopy, and described with a quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wavepacket by the intense off-resonant laser field.Comment: 5 pages, 4 figure

    Nanostructures with Group IV nanocrystals obtained by LPCVD and thermal annealing of SiGeO layers

    Get PDF
    Nanocrystals embedded in an oxide matrix have been fabricated by annealing SiGeO films deposited by LPCVD. The composition of the oxide layers and its evolution after annealing as well as the presence and nature of nanocrystals in the films have been studied by several experimental techniques. The results are analyzed and discussed in terms of the main deposition parameters and the annealing temperature

    Attosecond control of electron dynamics in carbon monoxide

    Full text link
    Laser pulses with stable electric field waveforms establish the opportunity to achieve coherent control on attosecond timescales. We present experimental and theoretical results on the steering of electronic motion in a multi-electron system. A very high degree of light-waveform control over the directional emission of C+ and O+ fragments from the dissociative ionization of CO was observed. Ab initio based model calculations reveal contributions to the control related to the ionization and laser-induced population transfer between excited electronic states of CO+ during dissociation

    Localized Refractive Changes Induced by Symmetric and Progressive Asymmetric Intracorneal Ring Segments Assessed with a 3D Finite-Element Model.

    Get PDF
    To build a representative 3D finite element model (FEM) for intracorneal ring segment (ICRS) implantation and to investigate localized optical changes induced by different ICRS geometries, a hyperelastic shell FEM was developed to compare the effect of symmetric and progressive asymmetric ICRS designs in a generic healthy and asymmetric keratoconic (KC) cornea. The resulting deformed geometry was assessed in terms of average curvature via a biconic fit, sagittal curvature (K), and optical aberrations via Zernike polynomials. The sagittal curvature map showed a locally restricted flattening interior to the ring (Kmax -11 to -25 dpt) and, in the KC cornea, an additional local steepening on the opposite half of the cornea (Kmax up to +1.9 dpt). Considering the optical aberrations present in the model of the KC cornea, the progressive ICRS corrected vertical coma (-3.42 vs. -3.13 µm); horizontal coma (-0.67 vs. 0.36 µm); and defocus (2.90 vs. 2.75 µm), oblique trefoil (-0.54 vs. -0.08 µm), and oblique secondary astigmatism (0.48 vs. -0.09 µm) aberrations stronger than the symmetric ICRS. Customized ICRS designs inspired by the underlying KC phenotype have the potential to achieve more tailored refractive corrections, particularly in asymmetric keratoconus patterns

    Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields

    Get PDF
    Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D+ and Cl+ fragments were recorded via velocity-map imaging. A waveformdependent anti-correlated directional emission of D+ and Cl+ fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl+ and in turn the directional emission of charged fragments upon the breakup of the molecular ion

    Dealing with Imperfection Sensitivity of Composite Structures Prone to Buckling

    Get PDF
    The Space industry demands for lighter and cheaper launcher transport systems. Structural weight reduction by exploitation of structural reserves in composite launcher structures contributes to this aim, however, it requires accurate, fast and experimentally validated stability analysis of real structures under realistic loading conditions. Structures in space applications can be imperfection sensitive because their maximum load is often equal or close to the first buckling load. The current design guidelines were developed only for metallic structures and are from 1968. For composites structures no appropriate guidelines exist. To fill this gap DLR developed a promising “Single Perturbation Load Approach” which exploits the worst imperfections idea efficiently. In the running EU project DESICOS (New Robust DESIgn Guideline for Imperfection Sensitive COmposite Launcher Structures) this approach will be further investigated and combined with a stochastic approach resulting in a future design approach. This chapter deals with the state-of-the-art in buckling of imperfection sensitive composite structures, recent investigations on the new design approach, and the DESICOS project. It describes the line of actions of the new design approach, and specifies the theoretical and experimental work to be carried out

    Dyadosphere bending of light

    Full text link
    In the context of the static and spherically symmetric solution of a charged compact object, we present the expression for the bending of light in the region just outside the event horizon (the dyadosphere) where vacuum polarization effects are taken into account.Comment: 4 pages, LaTeX, to appear in A&A (2001
    corecore