17,580 research outputs found

    Credal Networks under Epistemic Irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised type of Bayesian network that relaxes its two main building blocks. On the one hand, the local probabilities are allowed to be partially specified. On the other hand, the assessments of independence do not have to hold exactly. Conceptually, these two features turn credal networks under epistemic irrelevance into a powerful alternative to Bayesian networks, offering a more flexible approach to graph-based multivariate uncertainty modelling. However, in practice, they have long been perceived as very hard to work with, both theoretically and computationally. The aim of this paper is to demonstrate that this perception is no longer justified. We provide a general introduction to credal networks under epistemic irrelevance, give an overview of the state of the art, and present several new theoretical results. Most importantly, we explain how these results can be combined to allow for the design of recursive inference methods. We provide numerous concrete examples of how this can be achieved, and use these to demonstrate that computing with credal networks under epistemic irrelevance is most definitely feasible, and in some cases even highly efficient. We also discuss several philosophical aspects, including the lack of symmetry, how to deal with probability zero, the interpretation of lower expectations, the axiomatic status of graphoid properties, and the difference between updating and conditioning

    U(1) Chiral Gauge Theory with Domain Wall Fermions and Gauge Fixing

    Get PDF
    We investigate a U(1) lattice chiral gauge theory with the waveguide formulation of the domain wall fermions and with compact gauge fixing. In the reduced model limit, there seems to be no mirror chiral modes at the waveguide boundary.Comment: LATTICE99 (chiral gauge theories), 3 pages, 3 figure

    State sequence prediction in imprecise hidden Markov models

    Get PDF
    We present an efficient exact algorithm for estimating state sequences from outputs (or observations) in imprecise hidden Markov models (iHMM), where both the uncertainty linking one state to the next, and that linking a state to its output, are represented using coherent lower previsions. The notion of independence we associate with the credal network representing the iHMM is that of epistemic irrelevance. We consider as best estimates for state sequences the (Walley-Sen) maximal sequences for the posterior joint state model (conditioned on the observed output sequence), associated with a gain function that is the indicator of the state sequence. This corresponds to (and generalises) finding the state sequence with the highest posterior probability in HMMs with precise transition and output probabilities (pHMMs). We argue that the computational complexity is at worst quadratic in the length of the Markov chain, cubic in the number of states, and essentially linear in the number of maximal state sequences. For binary iHMMs, we investigate experimentally how the number of maximal state sequences depends on the model parameters
    corecore