17,580 research outputs found
Credal Networks under Epistemic Irrelevance
A credal network under epistemic irrelevance is a generalised type of
Bayesian network that relaxes its two main building blocks. On the one hand,
the local probabilities are allowed to be partially specified. On the other
hand, the assessments of independence do not have to hold exactly.
Conceptually, these two features turn credal networks under epistemic
irrelevance into a powerful alternative to Bayesian networks, offering a more
flexible approach to graph-based multivariate uncertainty modelling. However,
in practice, they have long been perceived as very hard to work with, both
theoretically and computationally.
The aim of this paper is to demonstrate that this perception is no longer
justified. We provide a general introduction to credal networks under epistemic
irrelevance, give an overview of the state of the art, and present several new
theoretical results. Most importantly, we explain how these results can be
combined to allow for the design of recursive inference methods. We provide
numerous concrete examples of how this can be achieved, and use these to
demonstrate that computing with credal networks under epistemic irrelevance is
most definitely feasible, and in some cases even highly efficient. We also
discuss several philosophical aspects, including the lack of symmetry, how to
deal with probability zero, the interpretation of lower expectations, the
axiomatic status of graphoid properties, and the difference between updating
and conditioning
U(1) Chiral Gauge Theory with Domain Wall Fermions and Gauge Fixing
We investigate a U(1) lattice chiral gauge theory with the waveguide
formulation of the domain wall fermions and with compact gauge fixing. In the
reduced model limit, there seems to be no mirror chiral modes at the waveguide
boundary.Comment: LATTICE99 (chiral gauge theories), 3 pages, 3 figure
State sequence prediction in imprecise hidden Markov models
We present an efficient exact algorithm for estimating state sequences from outputs (or observations) in imprecise hidden Markov models (iHMM), where both the uncertainty linking one state to the next, and that linking a state to its output, are represented using coherent lower previsions. The notion of independence we associate with the credal network representing the iHMM is that of epistemic irrelevance. We consider as best estimates for state sequences the (Walley-Sen) maximal sequences for the posterior joint state model (conditioned on the observed output sequence), associated with a gain function that is the indicator of the state sequence. This corresponds to (and generalises) finding the state sequence with the highest posterior probability in HMMs with precise transition and output probabilities (pHMMs). We argue that the computational complexity is at worst quadratic in the length of the Markov chain, cubic in the number of states, and essentially linear in the number of maximal state sequences. For binary iHMMs, we investigate experimentally how the number of maximal state sequences depends on the model parameters
- …