7,473 research outputs found

    Inscribing the Mask: Nyau Masks, Ritual and Performance Among the Chewa of Central Malawi.

    Get PDF
    This thesis presents an interpretation of nyau masks of the Chewa people in the central region of Malawi. Theoretically, ethnography in the thesis is informed by text interpretation as in the writings of Paul Ricoeur (1979). Texts in the thesis include the inscription of a performance, narratives of ritual events, oral discourse, and the masks themselves. Masks as texts include form, color, imagery, portraiture, construction and materials used, naming, roles, and movement; and the discourse about these. In the thesis masks are inscribed in their various roles as they are performed in funerals, initiations into the nyau society, and funeral remembrance dances. Each Chapter develops one context of masks and masking, ending with an interpretation of that context. Each interpretation builds upon the interpretations of others from one Chapter to the next, culminating in an overall interpretation of Chewa masks and masking in the final conclusion. This methodology is further focused by one recurring theme of masks; life, death and a sense of rebirth, in reference to the work of Bloch and Parry (1982) and others. Seven Chapters elaborate central ideas about the masks and the nyau masking society. These ideas include: performance and the masked event; the mask materials, mask-makers and re-creation of mask identity; the masks in relation to one another and in relation to the community; masks from historical experience; values and hierarchy of masks; ritual roles in masking; and a construction of nyau cosmology which is embodied in masks, particularly Kasivamaliro. The thesis attempts to demonstrate that Chewa masks, with all the inherent conflicting, diverse and differing local understandings presented in each context, also presents a totality; an interpretation which incorporates all of these contexts into a larger text. This wholeness is shown to be construed from the myriad details which make up masking, accounting for change and adaptation while asserting a continuity in the central theme of death and rebirth

    Mapping intermolecular interactions and active site conformations: from human MMP-1 crystal structure to molecular dynamics free energy calculations

    Get PDF
    The zinc-dependent Matrix Metalloproteinases (MMPs) found within the extracellular matrix (ECM) of vertebrates are linked to pathological processes such as arthritis, skin ulceration and cancer. Although a general backbone proteolytic mechanism is understood, crystallographic data continue to suggest an active site that is too narrow to encompass the respective substrate. We present a fully parameterised Molecular Dynamics (MD) study of the structural properties of an MMP-1-collagen crystallographic structure (Protein Data Bank – 4AUO), followed by an exploration of the free energy surface of a collagen polypeptide chain entering the active site, using a combined meta-dynamics and umbrella sampling (MDUS) approach. We conclude that the interactions between MMP-1 and the collagen substrate are in good agreement with a number of experimental studies. As such, our unrestrained MD simulations and our MDUS results, which indicate an energetic barrier for a local uncoiling and insertion event, can inform future investigations of the collagen-peptide non-bonded association steps with the active site prior to proteolytic mechanisms. The elucidation of such free energy barriers provides a better understanding of the role of the enzyme in the ECM and is important in the design of future MMP inhibitors

    Lysine-Arginine Advanced Glycation End-Product Cross-links and the Effect on Collagen Structure: A Molecular Dynamics Study

    Get PDF
    The accumulation of advanced glycation end-products is a fundamental process that is central to age-related decline in musculoskeletal tissues and locomotor system function and other collagen-rich tissues. However, although computational studies of advanced glycation end-product cross-links could be immensely valuable, this area remains largely unexplored given the limited availability of structural parameters for the derivation of force fields for Molecular Dynamics simulations. In this article, we present the bonded force constants, atomic partial charges and geometry of the arginine-lysine cross-links DOGDIC, GODIC, and MODIC. We have performed in vacuo Molecular Dynamics simulations to validate their implementation against quantum mechanical frequency calculations. A DOGDIC advanced glycation endproduct cross-link was then inserted into a model collagen fibril to explore structural changes of collagen and dynamics in interstitial water. Unlike our previous studies of glucosepane, our findings suggest that intra-collagen DOGDIC cross-links furthers intra-collagen peptide hydrogen-bonding and does not promote the diffusion of water through the collagen triple helices

    Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: A molecular dynamics simulation study

    Get PDF
    Covalently cross-linked advanced glycation end products (AGE) are among the major post-translational modifications to proteins as a result of non-enzymatic glycation. The formation of AGEs has been shown to have adverse effects on the properties of the collagenous tissue; they are even linked to a number of age related disorders. Little is known about the sites at which these AGEs form or why certain sites within the collagen are energetically more favourable than others. In this study we have used a proven fully atomistic molecular dynamics approach to identify six sites where the formation of the intra-molecular 3-deoxyglucosone-derived imidazolium cross-link (DOGDIC) is energetically favourable. We have also conducted a comparison of these positions with those of the more abundant glucosepane cross-link, to determine any site preference. We show that when we consider both lysine and arginine AGEs, they exhibit a prevalence to form within the gap region of the collagen fibril

    Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen

    Get PDF
    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule’s size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules

    Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking

    Get PDF
    Non-enzymatic advanced glycation end product (AGE) cross-linking of collagen molecules has been hypothesised to result in significant changes to the mechanical properties of the connective tissues within the body, potentially resulting in a number of age related diseases. We have investigated the effect of two of these cross-links, glucosepane and DOGDIC, on the tensile and lateral moduli of the collagen molecule through the use of a steered molecular dynamics approach, using previously identified preferential formation sites for intra-molecular cross-links. Our results show that the presence of intra-molecular AGE cross-links increases the tensile and lateral Young’s moduli in the low strain domain by between 3.0–8.5% and 2.9–60.3% respectively, with little effect exhibited at higher strains

    ForceGen: atomic covalent bond value derivation for Gromacs

    Get PDF
    A large number of crystallographic protein structures include ligands, small molecules and post-translational modifications. Atomic bond force values for computational atomistic models of post-translational or non-standard amino acids, metal binding active sites, small molecules and drug molecules are not readily available in most simulation software packages. We present ForceGen, a Java tool that extracts the bond stretch and bond angle force values and equilibrium values from the Hessian of a Gaussian vibrational frequency analysis. The parameters are compatible with force fields derived using the second order tensor of the Hessian. The output is formatted with the Gromacs topology in mind. This study further demonstrates the use of ForceGen over the quantum mechanically derived structures of a small organic solvent, a naturally occurring protein crosslink derived from two amino acids following post-translational modification and the amino acid ligands of a zinc ion. We then derive Laplacian bond orders to understand how the resulting force values relate back to the quantum mechanical model. The parameterisation of the organic solvent, toluene, was verified using Molecular Mechanics simulations. The structural data from the simulation compared well with the quantum mechanical structure and the system density compared well with experimental values

    Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study

    Get PDF
    The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation.fals

    Computational study of glucosepane–water and hydrogen bond formation: an electron topology and orbital analysis

    Get PDF
    The collagen protein provides tensile strength to the extracellular matrix in addition to localising cells, proteins and protein cofactors. Collagen is susceptible to a build up of glycation modifications as a result of an exceptionally long half-life. Glucosepane is a collagen cross-linking advanced glycation end product; the structural and mechanical effects of glucosepane are still the subjects of much debate. With the prospect of an ageing population, the management and treatment of age-related diseases is becoming a pressing concern. One area of interest is the isolation of hydrated glucosepane, which has yet to be reported at an atomistic level. This study presents a series of glucosepane–water complexes within an implicit aqueous environment. Electronic structure calculations were performed using density functional theory and a high level basis set. Hydrogen bonds between glucosepane and explicit water were identified by monitoring changes to covalent bonds, calculating levels of electron donation from Natural Bonding Orbital analysis and the detection of bond critical points. Hydrogen bond strength was calculated using second-order perturbation calculations. The combined results suggest that glucosepane is very hydrophilic, with the imidazole feature being energetically more attractive to water than either hydroxyl group, although all hydrogen bonds, regardless of bond strength, were electrostatic in nature. Our results are in growing support of an earlier hypothesis that cross-links may result in an increase in interstitial water retention, which would permit the collagen fibril to swell, thereby potentially affecting the tensile and compression properties and biological function of connective tissues

    Thermodynamic stability of Fe/O solid solution at inner-core conditions

    Get PDF
    We present a new technique which allows the fully {\em ab initio} calculation of the chemical potential of a substitutional impurity in a high-temperature crystal, including harmonic and anharmonic lattice vibrations. The technique uses the combination of thermodynamic integration and reference models developed recently for the {\em ab initio} calculation of the free energy of liquids and anharmonic solids. We apply the technique to the case of the substitutional oxygen impurity in h.c.p. iron under Earth's core conditions, which earlier static {\em ab initio} calculations indicated to be thermodynamically very unstable. Our results show that entropic effects arising from the large vibrational amplitude of the oxygen impurity give a major reduction of the oxygen chemical potential, so that oxygen dissolved in h.c.p. iron may be stabilised at concentrations up a few mol % under core conditions
    • …
    corecore