50 research outputs found

    Anti–Neutrophil Extracellular Trap Antibodies in Antiphospholipid Antibody–Positive Patients: Results From the Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking Clinical Database and Repository

    Get PDF
    OBJECTIVE: This study aimed to elucidate the presence, antigen specificities, and potential clinical associations of anti–neutrophil extracellular trap (anti-NET) antibodies in a multinational cohort of antiphospholipid (aPL) antibody–positive patients who did not have lupus. METHODS: Anti-NET IgG/IgM levels were measured in serum samples from 389 aPL-positive patients; 308 patients met the classification criteria for antiphospholipid syndrome. Multivariate logistic regression with best variable model selection was used to determine clinical associations. For a subset of the patients (n = 214), we profiled autoantibodies using an autoantigen microarray platform. RESULTS: We found elevated levels of anti-NET IgG and/or IgM in 45% of the aPL-positive patients. High anti-NET antibody levels are associated with more circulating myeloperoxidase (MPO)–DNA complexes, which are a biomarker of NETs. When considering clinical manifestations, positive anti-NET IgG was associated with lesions affecting the white matter of the brain, even after adjusting for demographic variables and aPL profiles. Anti-NET IgM tracked with complement consumption after controlling for aPL profiles; furthermore, patient serum samples containing high levels of anti-NET IgM efficiently deposited complement C3d on NETs. As determined by autoantigen microarray, positive testing for anti-NET IgG was significantly associated with several autoantibodies, including those recognizing citrullinated histones, heparan sulfate proteoglycan, laminin, MPO–DNA complexes, and nucleosomes. Anti-NET IgM positivity was associated with autoantibodies targeting single-stranded DNA, double-stranded DNA, and proliferating cell nuclear antigen. CONCLUSION: These data reveal high levels of anti-NET antibodies in 45% of aPL-positive patients, where they potentially activate the complement cascade. While anti-NET IgM may especially recognize DNA in NETs, anti-NET IgG species appear to be more likely to target NET-associated protein antigens

    Heterogeneity of muscarinic receptor-mediated Ca 2+

    No full text

    Nitro-Oleic Acid Inhibits Firing and Activates TRPV1- and TRPA1-Mediated Inward Currents in Dorsal Root Ganglion Neurons from Adult Male Rats

    No full text
    Nitro-oleic acid (OA-NO2), an electrophilic fatty acid by-product of nitric oxide and nitrite reactions, is present in normal and inflamed mammalian tissues at up to micromolar concentrations and exhibits anti-inflammatory signaling actions. The effects of OA-NO2 on cultured dorsal root ganglion (DRG) neurons were examined using fura-2 Ca2+ imaging and patch clamping. OA-NO2 (3.5–35 μM) elicited Ca2+ transients in 20 to 40% of DRG neurons, the majority (60–80%) of which also responded to allyl isothiocyanate (AITC; 1–50 μM), a TRPA1 agonist, and to capsaicin (CAPS; 0.5 μM), a TRPV1 agonist. The OA-NO2-evoked Ca2+ transients were reduced by the TRPA1 antagonist 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl) acetamide (HC-030031; 5–50 μM) and the TRPV1 antagonist capsazepine (10 μM). Patch-clamp recording revealed that OA-NO2 depolarized and induced inward currents in 62% of neurons. The effects of OA-NO2 were elicited by concentrations ≥5 nM and were blocked by 10 mM dithiothreitol. Concentrations of OA-NO2 ≥5 nM reduced action potential (AP) overshoot, increased AP duration, inhibited firing induced by depolarizing current pulses, and inhibited Na+ currents. The effects of OA-NO2 were not prevented or reversed by the NO-scavenger carboxy-2-phenyl-4,4,5,5-tetramethylimidazolineoxyl-1-oxyl-3-oxide. A large percentage (46–57%) of OA-NO2-responsive neurons also responded to CAPS (0.5 μM) or AITC (0.5 μM). OA-NO2 currents were reduced by TRPV1 (diarylpiperazine; 5 μM) or TRPA1 (HC-030031; 5 μM) antagonists. These data reveal that endogenous OA-NO2 generated at sites of inflammation may initially activate transient receptor potential channels on nociceptive afferent nerves, contributing to the initiation of afferent nerve activity, and later suppresses afferent firing

    Effects of β3-Adrenergic Receptor Activation on Rat Urinary Bladder Hyperactivity Induced by OvariectomyS⃞

    No full text
    Voiding dysfunctions, including increased voiding frequency, urgency, or incontinence, are prevalent in the postmenopausal population. β3-Adrenergic receptor (β3AR) agonists, which relax bladder smooth muscle, are being developed to treat these conditions. We utilized the rat ovariectomy (OVX) model to investigate the effect of ovarian hormone depletion on bladder function and the potential for β3AR agonists to treat bladder hyperactivity in this setting. OVX increased voiding frequency and decreased bladder capacity by ∼25% in awake rats and induced irregular cystometrograms in urethane-anesthetized rats. Reverse transcription-polymerase chain reaction revealed three βARs subtypes (β1,2,3) in bladder tissue, and immunostaining indicated β3AR localization in urothelium and detrusor. Receptor expression was not different in OVX and SHAM rats. The β3AR agonist selectivity of BRL37344 [(±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid sodium hydrate], TAK-677 [(3-((2R)-(((2R)-(3-chlorophenyl)-2-hydroxyethyl)amino)propyl)-1H-indol-7-yloxy)acetic acid], and FK175 [acetic acid, 2-[[(8S)-8-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl]oxy], ethyl ester, hydrochloride] was confirmed by examining the relative potency for elevation of cAMP in CHOK1 cells overexpressing the various rat βARs. Intravenous injection of each of the β3AR agonists (0.1–500 μg/kg) in anesthetized rats decreased voiding frequency, bladder pressure, and amplitude of bladder contractions. In bladder strips, β3AR agonists (10-12-10-4 M) decreased baseline tone and reduced spontaneous contractions. BRL37344 (5 mg/kg) and TAK-677 (5 mg/kg) injected intraperitoneally in awake rats decreased voiding frequency by 40 to 70%. These effects were not altered by OVX. The results indicate that OVX-induced bladder dysfunction, including decreased bladder capacity and increased voiding frequency, is not associated with changes in β3AR expression or the bladder inhibitory effects of β3AR agonists. This suggests that β3AR agonists should prove effective for the treatment of overactive bladder symptoms in the postmenopausal population
    corecore