19 research outputs found

    The Crystal Structure and RNA-Binding of an Orthomyxovirus Nucleoprotein

    Get PDF
    Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ,12 nts of RNA, shorter than the 24ヨ28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    The effect of copper on the mRNA expression profile of xenobiotic-metabolizing enzymes in cultured rat H4-II-E cells

    Get PDF
    Copper (Cu2+) is an essential element that plays important roles in physiological functions of the body. However, high Cu2+ levels can have toxic implications. This study aims to investigate the constitutive response to Cu2+ exposure of xenobiotic-metabolizing enzymes in cultured rat liver (H4-II-E) cell lines. Rat cells were exposed to copper sulfate (0-500 mu M) for 24 h. The effects of Cu2+ on the messenger RNA (mRNA) expressions of phase I and II enzymes and regulatory elements were examined using real-time PCR. Metallothionein mRNA expression was induced in a dose-dependent manner after treatment with Cu2+. mRNA expressions of phase I enzymes such as cytochrome P450 1A1 and 1A2 (CYP1A1 and CYP1A2) were slightly induced after exposure to low concentrations of Cu2+; however, CYP1A1 and CYP1A2 mRNA expressions were significantly downregulated at higher Cu2+ concentrations. These effects corresponded with expression of aryl hydrocarbon receptor mRNA. The mRNA expressions of phase II enzymes were reduced upon exposure to Cu2+. In conclusion, phase I and II enzyme expressions were significantly modulated upon Cu2+ exposure. These results indicated that Cu2+ exposure had toxicological implications for cultured H4-II-E cells

    Thymic nurse cells: morphological study during their isolation from murine thymus.

    No full text
    Thymic nurse cells (TNC), which are multicellular complexes composed of epithelial cells and thymocytes, were obtained from C3H-mice thymuses. They were described by means of light and electron microscopy. The morphology of epithelial cells forming isolated TNC compared to that of small tissue fragments obtained by enzymatic digestion revealed that TNC could be derived from all parts of the thymus: cortex, corticomedullary junction and medulla, the cortex being their principal source. This variety of origin, the presence of several epithelial cells inside a single TNC, the presence of non-lymphoid cells, and the various locations of cleaved desmosomes confirmed that their aspect "in vitro" as round and sealed structures can be considered to be an artifact due to the isolation technique used. Indeed, during this procedure, they are formed by a process of wrapping of the epithelial cytoplasm around the tightly associated thymocytes. All three epithelial cell types: cortical reticular cells, medullary reticular cells, and medullary globular cells can form TNC

    Thymic nurse cells in culture: morphological and antigenic characterization.

    No full text
    Epithelial monolayers were derived from thymic nurse cells (TNC), and were seeded onto collagen-coated dishes immediately after their isolation from young adult C3H-murine thymuses. Different media and supplements were tested in order to obtain cultures that were as pure as possible. Primary cultures were enriched in epithelial cells but always contained non-epithelial components among which fibroblasts predominated. Immunodetection of keratins, and repeated light- and electron-microscopic observations established the epithelial nature of the elongated cells derived from TNC; these elongated cells were cortical reticular cells, and were different from medullary globular cells that immediately adopted a mosaic pattern in vitro. At the beginning of the culture, the necrosis of cortical lymphocytes appeared to be toxic for epithelial cells; when epithelial cells survived, they showed a temporary lipid accumulation. After a 5-day culture, they still synthesized DNA but lost this capacity thereafter and dedifferentiated. The lympho-epithelial symbiosis appeared to be necessary to maintain some epithelial characteristics of the cultured cells, such as the clear vesicles and the expression of Ia antigens. In sub-cultures, the monolayers were almost purely epithelial in nature but growth was no longer observed. The cells remained reticular in shape, as they were in vivo, but their cytoplasm and their nucleus became larger and numerous cells were multinucleated. Confluence was not obtained with classical media even after mitogenic stimulation. The frequent observation of strongly keratinized areas suggested a process of terminal differentiation; this could not be avoided by using low serum concentration
    corecore