11 research outputs found

    Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality

    Get PDF
    Abstract Crystals with broken inversion symmetry can host fundamentally appealing and technologically relevant periodical or localized chiral magnetic textures. The type of the texture as well as its magnetochiral properties are determined by the intrinsic Dzyaloshinskii-Moriya interaction (DMI), which is a material property and can hardly be changed. Here we put forth a method to create new artificial chiral nanoscale objects with tunable magnetochiral properties from standard magnetic materials by using geometrical manipulations. We introduce a mesoscale Dzyaloshinskii-Moriya interaction that combines the intrinsic spin-orbit and extrinsic curvature-driven DMI terms and depends both on the material and geometrical parameters. The vector of the mesoscale DMI determines magnetochiral properties of any curved magnetic system with broken inversion symmetry. The strength and orientation of this vector can be changed by properly choosing the geometry. For a specific example of nanosized magnetic helix, the same material system with different geometrical parameters can acquire one of three zero-temperature magnetic phases, namely, phase with a quasitangential magnetization state, phase with a periodical state and one intermediate phase with a periodical domain wall state. Our approach paves the way towards the realization of a new class of nanoscale spintronic and spinorbitronic devices with the geometrically tunable magnetochirality

    Commensurability and chaos in magnetic vortex oscillations

    No full text
    Magnetic vortex dynamics in thin films is characterized by gyrotropic motion, the sense of gyration depending on the vortex core polarity, which reverses when a critical velocity is reached. Although self-sustained vortex oscillations in nanoscale systems are known to be possible, the precise role of core reversal in such dynamics remains unknown. Here we report on an experimental observation of periodic core reversal during self-sustained vortex gyration in a magnetic nanocontact system. By tuning the ratio between the gyration frequency and the rate of core reversal, we show that commensurate phase-locked and incommensurate chaotic states are possible, resulting in Devil's staircases with driving currents. These systems could have the potential to serve as tunable nanoscale radiofrequency electrical oscillators for secure communications, allowing schemes such as encryption by chaos on demand
    corecore