55 research outputs found

    Management of breakthrough disease in patients with multiple sclerosis: when an increasing of Interferon beta dose should be effective?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In daily clinical setting, some patients affected by relapsing-remitting Multiple Sclerosis (RRMS) are switched from the low-dose to the high-dose Interferon beta (IFNB) in order to achieve a better control of the disease.</p> <p>Purpose</p> <p>In this observational, post-marketing study we reported the 2-year clinical outcomes of patients switched to the high-dose IFNB; we also evaluated whether different criteria adopted to switch patients had an influence on the clinical outcomes.</p> <p>Methods</p> <p>Patients affected by RRMS and switched from the low-dose to the high-dose IFNB due to the occurrence of relapses, or contrast-enhancing lesions (CELs) as detected by yearly scheduled MRI scans, were followed for two years. Expanded Disability Status Scale (EDSS) scores, as well as clinical relapses, were evaluated during the follow-up period.</p> <p>Results</p> <p>We identified 121 patients switched to the high-dose IFNB. One hundred patients increased the IFNB dose because of the occurrence of one or more relapses, and 21 because of the presence of one or more CELs, even in absence of clinical relapses. At the end of the 2-year follow-up, 72 (59.5%) patients had a relapse, and 51 (42.1%) reached a sustained progression on EDSS score. Overall, 85 (70.3%) patients showed some clinical disease activity (i.e. relapses or disability progression) after the switch.</p> <p>Relapse risk after increasing the IFNB dose was greater in patients who switched because of relapses than those switched only for MRI activity (HR: 5.55, p = 0.001). A high EDSS score (HR: 1.77, p < 0.001) and the combination of clinical and MRI activity at switch raised the risk of sustained disability progression after increasing the IFNB dose (HR: 2.14, p = 0.01).</p> <p>Conclusion</p> <p>In the majority of MS patients, switching from the low-dose to the high-dose IFNB did not reduce the risk of further relapses or increased disability in the 2-year follow period.</p> <p>Although we observed that patients who switched only on the basis on MRI activity (even in absence of clinical attacks) had a lower risk of further relapses, larger studies are warranted before to recommend a switch algorithm based on MRI findings.</p

    Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials

    Rapid and Accurate Prediction and Scoring of Water Molecules in Protein Binding Sites

    Get PDF
    Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity

    Immunological Mechanism of Action and Clinical Profile of Disease-Modifying Treatments in Multiple Sclerosis

    Get PDF

    Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting

    Get PDF
    Increasing numbers of drugs are being developed for the treatment of multiple sclerosis (MS). Measurement of relevant outcomes is key for assessing the efficacy of new drugs in clinical trials and for monitoring responses to disease-modifying drugs in individual patients. Most outcomes used in trial and clinical settings reflect either clinical or neuroimaging aspects of MS (such as relapse and accrual of disability or the presence of visible inflammation and brain tissue loss, respectively). However, most measures employed in clinical trials to assess treatment effects are not used in routine practice. In clinical trials, the appropriate choice of outcome measures is crucial because the results determine whether a drug is considered effective and therefore worthy of further development; in the clinic, outcome measures can guide treatment decisions, such as choosing a first-line disease-modifying drug or escalating to second-line treatment. This Review discusses clinical, neuroimaging and composite outcome measures for MS, including patient-reported outcome measures, used in both trials and the clinical setting. Its aim is to help clinicians and researchers navigate through the multiple options encountered when choosing an outcome measure. Barriers and limitations that need to be overcome to translate trial outcome measures into the clinical setting are also discussed
    corecore